Math 647 - Applied PDEs Homework 8 - Extra Problem

Spring 2019
Let $D=\left\{(x, y): x^{2}+y^{2}<1\right\} \subset \mathbb{R}^{2}$ and consider the Neumann BVP

$$
\begin{cases}\Delta u=0, & (x, y) \in D \\ \frac{\partial u}{\partial n}=h, & x^{2}+y^{2}=1,\end{cases}
$$

where $\frac{\partial u}{\partial n}=\nabla u \cdot n$ denotes the normal derivative of u on $\partial D, n$ is the unit normal vector to ∂D, and where h is a given function.
(a) Write the above equation in polar coordinates (r, θ). For the boundary condition, notice that the normal derivative becomes $\frac{\partial u}{\partial r}$ in polar coordinates.
(b) Suppose that $\int_{0}^{2 \pi} h(\theta) d \theta=0$. Solve the BVP from part (a) using separation of variables, i.e. seek a solution of the form $u(r, \theta)=R(r) \Theta(\theta)$. In particular, show that there are infinitely many solutions in this case.
(c) Why would your solution method have failed in part (b) if we did not require $\int_{0}^{2 \pi} h(\theta) d \theta=$ 0. (Hint: Carefully look where you used the assumption that $\int_{0}^{2 \pi} h(\theta) d \theta=0$ in part (b)...)

