Math 647 - Applied PDEs Homework 7 - Extra Problem

Spring 2019
Extra Problem: Consider the following diffusion problem on a bounded interval:

$$
\left\{\begin{array}{l}
u_{t}=u_{x x}-a(x) u, \quad 0<x<L, \quad t>0 \\
u(0, t)=u(L, T)=0 \\
u(x, 0)=\phi(x)
\end{array}\right.
$$

where $L>0$ and the functions ϕ and a are given.
(a) Show that the method of separation of variables is applicable to this problem by reducing the given PDE and boundary conditions to two ODE's coupled by a parameter λ, one of which is supplemented with a set of boundary conditions. Do NOT attempt to solve these ODE's.
(b) Prove that if $a(x)$ is a real-valued function, that is $a(x) \in \mathbb{R}$ for all $x \in[0, L]$, then all the eigenvalues of the corresponding eigenvalue problem from part (a) must be real. Hint: Note that, to start, you don't even know if the eigenvalues are real, and hence the corresponding eigenfunctions may not be real. In general, it may be that $\lambda \in \mathbb{C}$ and that the associated eigenfunction may be complex-valued, i.e. $X(x) \in \mathbb{C}$ for all $x \in[0, L]$. For this problem, begin by multiplying the ODE for X from part (a) by ${ }^{1} \bar{X}$ and integrate the result over $[0, L]$. By integrating by parts, you should find that

$$
\int_{0}^{L}\left|X^{\prime}(x)\right|^{2} d x+\int_{0}^{L} a(x)|X(x)|^{2} d x=\lambda \int_{0}^{L}|X(x)|^{2} d x
$$

Taking the real and imaginary parts of the above equation, conclude that $\lambda \in \mathbb{R}$.
(c) Assuming that $a(x) \geq 0$ for all $x \in[0, L]$, prove that all the eigenvalues λ for the eigenvalue problem from part (a) must be positive.
Hint: Use your calculations from part (b) to first show if λ is an eigenvalue, then $\lambda \geq 0$. Then, show that if $\lambda=0$ then the eigenvalue problem only has the trivial solution.
(d) Taking $a(x)=1$ for all $x \in[0, L]$, conclude that all the eigenvalues of the given problem are strictly positive.
Remark: This follows immediately from part (c). However, this shows that there is some abstract non-sense that can sometimes be useful so you don't always have to consider $\lambda<0, \lambda=0$, and $\lambda>0$ separately. Furthermore, note in our class we never discussed HOW we knew that $\lambda \in \mathbb{R} . .$. we just assumed it and moved on. This exercise shows, in fact, that the eigenvalues λ MUST be real for this eigenvalue problem.

[^0]
[^0]: ${ }^{1}$ Note if $X=U+i V$ with U and V real-valued functions, then $\bar{X}=U-i V$. In particular, $X \bar{X}=|X|^{2}$.

