Math 647 - Applied PDEs Homework 5 - Extra Problems

Extra Problem \#1: Consider the wave equation on the half-line:

$$
u_{t t}=c^{2} u_{x x}, \quad x>0, \quad t \in \mathbb{R}
$$

with initial data $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=\psi(x)$ valid for all $x \geq 0$. Assume there exists a number $L>0$ such that $\phi(x)=\psi(x)=0$ for all $x>L$.
(a) Suppose we impose the Dirichlet boundary condition $u(0, t)=0$ for all $t \in \mathbb{R}$. Show that the waves will be at rest, and remain so, for all $0 \leq x \leq L$ after some time $T_{0}>0$. That is, show there exists a $T_{0}>0$ such that $u(x, t)=0$ for all $x \in[0, L]$ and $t>T_{0}$. Calculate T_{0} in terms of L.
(b) Suppose, rather, that we impose the Neumann boundary condition $u_{x}(0, t)=0$ for all $t \in \mathbb{R}$. Give an example that waves might never be at rest in the interval $[0, L]$ after the time $T_{0}>0$ calculated in part (a).

Extra Problem \#2: (Based on \#10 in Section 2.4 or Strauss) Consider the IVP

$$
\left\{\begin{array}{l}
u_{t}=k u_{x x}, \quad-\infty<x<\infty, \quad t>0 \\
u(0, x)=x^{2}, \quad-\infty<x<\infty
\end{array}\right.
$$

(a) Using the general solution formula from class, express the solution of this IVP as an integral. Do not evaluate this integral!!
(b) Observe that if $u(t, x)$ solves the above IVP, then $u_{x x x}$ solves the heat equation with initial condition $u(0, x)=0$ for all $-\infty<x<\infty$.
(c) Using part (b), show that the solution $u(t, x)$ to the given IVP must be of the form

$$
u(t, x)=A(t) x^{2}+B(t) x+C(t)
$$

for some functions A, B, C. Determine specific functions A, B, C such that this provides a solution to the given IVP.
(d) By uniqueness, your answers from parts (a) and (c) must be the same. Use this observation to deduce the value of the integral

$$
\int_{-\infty}^{\infty} p^{2} e^{-p^{2}} d p
$$

(Hint: Substitute $p=(x-y) / \sqrt{4 k t}$ in the integral in (a).)

Extra Problem \#3: Consider the following boundary value problem for Laplace's equation on the box $[0, a] \times[0, b]$:

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \quad 0<x<a, 0<y<b \\
u(0, y)=u(a, y)=0 \\
u(x, 0)=0, \quad u(x, b)=g(x) .
\end{array}\right.
$$

Using separation of variables, show ${ }^{1}$ this problem has solutions of the form

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{a}\right) \sinh \left(\frac{n \pi y}{a}\right),
$$

where the constants A_{n} can be determined from the function $g(x)$. Give an explicit formula for the constants A_{n}.

[^0]
[^0]: ${ }^{1}$ Here you are allowed to ignore issues of convergence for these infinite series... we will devote quite a bit of time to this analysis later...

