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TRANSVERSE INSTABILITY OF PERIODIC TRAVELING WAVES
IN THE GENERALIZED KADOMTSEV–PETVIASHVILI EQUATION∗

MATHEW A. JOHNSON† AND KEVIN ZUMBRUN†

Abstract. In this paper, we investigate the spectral instability of periodic traveling wave solu-
tions of the generalized Korteweg–de Vries equation to long wavelength transverse perturbations in
the generalized Kadomtsev–Petviashvili equation. By analyzing high and low frequency limits of the
appropriate periodic Evans function, we derive an orientation index which yields sufficient conditions
for such an instability to occur. This index is geometric in nature and applies to arbitrary periodic
traveling waves with minor smoothness and convexity assumptions on the nonlinearity. Using the
integrable structure of the ordinary differential equation governing the traveling wave profiles, we
are then able to calculate the resulting orientation index for the elliptic function solutions of the
Korteweg–de Vries and modified Korteweg–de Vries equations.
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1. Introduction. The Korteweg–de Vries equation

(1.1) ut = uxxx + uux

often arises as a model for one-dimensional long wavelength surface waves propagating
in weakly nonlinear dispersive media as well as the evolution of weakly nonlinear ion
acoustic waves in plasmas [TRR]. When the assumption that the wave is purely one-
dimensional is relaxed to allow for weak dependence in a transverse direction, one
is led to a variety of multidimensional generalizations of the KdV equation. One of
the most well studied weakly two-dimensional variations of the KdV equation is the
Kadomtsev–Petviashvili (KP) equation [KP] given by

(1.2) (ut − uxxx − uux)x + σuyy = 0,

where the constant σ = ±1 differentiates between equations with positive (σ = +1)
and negative (σ = −1) dispersion and the choice of σ depends on the exact physical
phenomenon being described.1 For instance, if σ = +1 (1.2) is referred to as the KP-I
equation, which can be used to model waves in thin films with high surface tension,
while (1.2) is called the KP-II equation in when σ = −1, which can be used to model
water waves with small surface tension. Various other physical applications utilize
equations of the form (1.2), such as the modeling of small amplitude internal waves
and in the study of unmagnetized dusty plasmas with variable dust charge [PJ].
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1Notice that one can always rescale the y variable to force σ to be any (nonzero) real number.
However, for convenience, we will always assume that σ = ±1.
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In many applications, appropriate scaling in the physical parameters introduces
a parameter α > 0 in the nonlinearity yielding a governing equation of the form

ut = uxxx + αuux.

In neighborhoods of parameter space where α = 0 one is forced to consider higher
order expansions in the nonlinearity, the most natural being of the form

ut = uxxx + βu2ux,

where β �= 0. The choice of the sign of β must be made depending on the particular
physical situation being studied. In particular, the choice of β clearly determines the
structure of the stationary homoclinic/heteroclinic solutions, and hence the case of
β > 0 and β < 0 define quite distinct dynamics. In the case of the modified KP
(mKP) equation (

ut − uxxx − βu2ux
)
x
+ σuyy = 0

arises naturally as a weakly two-dimensional generalization. In the context of dusty
plasmas with variable dust charge, the mKP equation can be derived near the “criti-
cal” density case (see [PJ] for details).

As our theory will not depend on the explicit form of the nonlinearity and to
encompass as many physical applications as possible, we will most often work with
the generalized KdV (gKdV) equation

(1.3) ut = uxxx + f(u)x

and its weakly two-dimensional variation of the generalized KP (gKP) equation

(1.4) (ut − uxxx − f(u)x)x + σuyy = 0

where the nonlinearity f is sufficiently smooth and satisfies general convexity assump-
tions. For such nonlinearities, the gKdV equation admits asymptotically constant
traveling solutions, known as solitary waves, as well as traveling waves which are spa-
tially periodic. It is the latter case we consider here. As a solution, u(x, t) of (1.3) is
clearly a y-independent solution of (1.4); it seems natural to question the stability of
such a solution to perturbations which have a nontrivial dependence on the transverse
(y) direction. Such a transverse instability analysis is the subject of the current pa-
per: in particular, we study the spectral stability of a stable y-independent spatially
periodic traveling wave solution of the gKdV equation to perturbations which are
coperiodic2 in x with low frequency oscillations in the transverse direction. To this
end, we will loosely follow the general Evans function approach of Gardner [G1] with
additional aspects of analysis from the more recent work of Johnson [J2].

The transverse instability of solitary waves of the KdV in the KP equation was
first conducted by Kadomtsev and Petviashvili [KP], where it was found that such so-
lutions are stable to transverse perturbations in the case of negative dispersion, while
they are unstable to long wavelength transverse perturbations in the case of posi-
tive dispersion (even though they are stable in the corresponding one-dimensional
problem). Moreover, in [APS] it was shown that a short wavelength cutoff for insta-
bility exists for the positive dispersion case and the dominate mode of instability was

2Notice by Floquet theory, one-dimensional spectral instability to coperiodic perturbations im-
plies spectral instability to localized perturbations.
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identified. Other authors have devised various techniques to demonstrate the trans-
verse instability of KdV solitary waves in the KP-I equation: for example, see the
pioneering work of Zakharov [Za], where the author utilizes the integrability of the
KP-I equation via the inverse scattering transform, and the recent work of Rousset
and Tzvetkov [RT2], where the authors use general PDE techniques.3 The transverse
instability of a one-dimensional stable gKdV solitary wave in the corresponding gKP
equation has recently been considered in [KTN] using perturbation analysis similar to
that of Kadomtsev and Petviashvili. In particular, multiple scale analysis was used to
derive an evolution equation for the wave velocity to describe the slow-time response
of the solitary wave in response to the long wavelength transverse perturbations. The
authors conclude that for positive dispersion the solitary waves of the gKdV equation
are always unstable to long wavelength transverse perturbations in the gKP equation.
Moreover, it was found that for some nonlinearities the solitary waves may in fact be
unstable in the case of negative dispersion.

In the case where the background solution of the gKdV is spatially periodic, there
do not seem to be any results concerning the transverse instability in the gKP equa-
tion, and, moreover, the stability of such solutions in general is much less understood.
This reflects the fact that the spectrum of the corresponding linearized operators is
purely continuous, and hence it seems more difficult for nonlinear periodic waves of
the gKdV to be stable than their solitary wave counterparts. Moreover, the periodic
waves of the gKdV in general have a much more rich structure than the solitary waves:
even in the case of power-law nonlinearities, it is not possible to write down a general
elementary representative for all periodic solutions of the gKdV, which stands in con-
trast to the solitary wave theory. Nevertheless, there has been much study recently
into the one-dimensional stability of such solutions under the gKdV flow with results
ranging from spectral stability to localized perturbations (see [BD], [BrJ], and [HK])
to nonlinear (orbital) stability to coperiodic perturbations (see [BrJK], [DK], and
[J1]). We also want to stress the fact that the periodic solutions are also physically
relevant as they are used to model nonlinear wave trains: such patterns are prevalent
in a variety of applications and their instabilities have been studied extensively in the
literature (see, for example, the classic works of Benjamin [Be1] and [Be2], Benjamin
and Feir [BF], Lighthill [L], and Whitham [W]).

The goal of this paper is to perform a transverse instability study in the case of
spatially periodic traveling wave solutions which are stable to perturbations in the x-
direction of unidirectional propagation. To this end, we will develop a somewhat non-
standard orientation index which detects instability of a T -periodic traveling wave of
the gKdV to perturbations in the gKP equation which are T -periodic in the x-direction
with low frequency oscillations in the transverse spatial variable y. Throughout this
paper, we will refer to such perturbations as long wavelength transverse perturbations.
This is accomplished by studying the behavior of the corresponding periodic Evans
function in both the high (real spectral) frequency and low (transverse) frequency
limits when the wave number of the transverse perturbation is small but nonzero.
As we will see, the high frequency analysis is somewhat delicate due to a degeneracy
in the KP equation. In particular, it is seen that one must take into account not
only the higher order effects of the dependence of the limiting asymptotic ordinary
differential equation on the background solution as in [MaZ3] and [PZ], but also the

3The methods of Rousset and Tzvetkov provide nonlinear transverse instability of the KdV
solitary wave and have the advantage over that of Zakharov of generalizing to the full water wave
problem in the presence of surface tension.
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inherent averaging/cancellation effects due to the periodicity. Such a result seems
new to the literature and relies on the use of block-triangularizing transformations
as used in [HLZ]. Moreover, in the appendix we give a slight simplification of the of
the tracking lemmas utilized in [MaZ3], [PZ], and [HLZ] by formulating the result in
terms of conjugating transformations rather than invariant graphs. This viewpoint
seems more closely related to the style and needs of current research (see, for example,
the related treatments in [Z6] and [NZ]). As a result, we will find that the limiting
behavior of the sign of the periodic Evans function for large (real) spectral frequency
is governed precisely by the sign of the dispersion parameter σ. Thus, the stability of
our periodic traveling waves depends directly on the case of dispersion chosen in the
gKP equation and hence on the exact physical phenomenon being described.

The low frequency analysis utilizes matrix perturbation theory and the methods
of [BrJ] and [J2]. In particular, we will explicitly construct four linearly independent
stationary solutions of the linearization of the governing PDE: three of these will
be given to us by variations in the traveling wave parameters, which we will use to
parameterize the traveling wave solutions of (1.3), while the fourth can be constructed
using standard techniques. Using variation of parameters then, we can compute the
leading order variation of these four functions in the transverse wave number k for
|k| � 1 and hence can determine the leading order variation of the periodic Evans
function in the transverse wave number at the origin in the spectral plane. This
leading order variation is expressed as a Jacobian determinant relating to the ability
to parameterize nearby periodic waves of fixed wave speeds by the conserved quantities
of the gKdV flow. It follows then that if this determinant has the opposite sign of
that of the high frequency limit (the parameter σ), we immediately have a spectral
instability to long wavelength transverse perturbations in the gKP equation. Notice
this approach is somewhat different than that of [J2], where transverse instability
in the generalized Zakharov–Kuznetsov equation was established by finding sufficient
conditions for eigenvalues bifurcating from the origin (in k) to enter the unstable
half-plane. In that case, the low frequency analysis involved considering variations of
elements of the kernel of the linearized operator in both the spectral variable and in the
transverse wave number. As a result, the results in [J2] concern spectral instability to
long wavelength perturbations in both the direction of propagation of the background
solution and the transverse direction. The orientation index derived in our case thus
seems to be nonstandard, in the sense that it detects instabilities to perturbations
which have bounded period in the x-direction and admit slow modulations in the
transverse direction.

The outline of this paper is as follows. In section 2, we review the basic properties
of the periodic traveling wave solutions of the gKdV equation (1.3). In particular,
we will discuss a parametrization of the traveling wave solutions of (1.3), which will
be useful throughout our analysis. In section 3, we conduct our transverse instability
analysis by first conducting a high frequency analysis of the associated periodic Evans
function and then conducting the corresponding low frequency analysis. As a result,
we will have an instability index which guarantees that a periodic traveling wave so-
lution of the gKdV is spectrally unstable to long wavelength transverse perturbations
in the gKP equation. This index can be calculated exactly in several model cases,
and the relevant results will be given. In section 4, we end with some closing remarks,
and in the appendix we present a proof of the tracking lemma utilized in the high
frequency analysis and also outline the proof of a formula crucial to the low frequency
analysis.
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2. Properties of periodic traveling GKdV waves. In this section, we review
some of the basic properties of the periodic traveling wave solutions of the gKdV
equation. For more details, see [BrJ] or [J1]. For each c > 0, a traveling wave with
speed c is a solution of the ordinary differential equation

(2.1) uxxx + f(u)x − cux = 0;

i.e., they are stationary solutions of (1.3) in the moving coordinate frame defined by
x+ct. This equation is clearly Hamiltonian, and hence we can reduce it to quadrature.
Indeed, by integrating (2.1) twice we see that a traveling wave profile of the gKdV
must satisfy the nonlinear oscillator equation

(2.2)
u2x
2

= E + au+
c

2
u2 − F (u),

where F is an antiderivative of the nonlinearity f satisfying F (0) = 0 and a and
E are constants of integration. Thus, the traveling waves form a four parameter
family of solutions of (1.3) described by the constants a, E, and c together with a
fourth constant of integration corresponding to a translation mode: this translation
direction is simply inherited from the translation invariance of (1.3) and hence can be
modded out. It follows that on open subsets of R3 = (a,E, c), (2.2) admits a periodic
orbit. Moreover, the boundary of these open subsets corresponds to solutions which
decay asymptotically at infinity and hence can be identified with the solitary wave
solutions. In particular, notice that in order for (2.2) to admit a solitary wave solution,
the constant E must be fixed by the prescribed boundary conditions and we must have
a = 0. It follows that the solitary waves form a codimension two subset of the family
of traveling waves.

In general, (1.3) admits three conserved quantities. In order to define these, let

V (u; a, c) = F (u)− au− c

2
u2

be the effective potential arising in the nonlinear oscillator equation (2.2). Throughout
this paper, we will assume the roots u± of the equation E = V (u; a, c) are simple,
satisfy u− < u+, and that V (u; a, c) < E for u ∈ (u−, u+). As a consequence, u±
are C1 functions of the traveling wave parameters a, E, and c, and, without loss
of generality, we can set u(0) = u−. It follows that we can express the period of a
periodic solution of (2.1) via the formula

T = T (a,E, c) =
√
2

∫ u+

u−

du√
E − V (u; a, c)

.

By a standard procedure, the above integral can be regularized at the square root
branch points and hence represents a C1 function of a, E, and c. Similarly, the
conserved quantities of the gKdV flow can be represented as

M(a,E, c) =

∫ T

0

u(x) dx = 2

∫ u+

u−

u du√
2 (E − V (u; a, c))

,

P (a,E, c) =

∫ T

0

u2(x) dx = 2

∫ u+

u−

u2 du√
2 (E − V (u; a, c))

,

H(a,E, c) =

∫ T

0

(
u2x
2

− F (u)

)
dx = 2

∫ u+

u−

E − V (u; a, c)− F (u)√
2 (E − V (u; a, c))

du,
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representing the mass, momentum, and Hamiltonian, respectively. As above, these
integrals can be regularized at the branch points and hence represent C1 functions of
the traveling wave parameters. As we will see, the gradients of the period and mass
of the solution u will play a very large role in this paper. However, as pointed out in
[BrJ], when E is nonzero gradients in the period can be interchanged for gradients of
the conserved quantities via the relation

E∇a,E,cT + a∇a,E,cM +
c

2
∇a,E,cP +∇a,E,cH = 0,

where ∇a,E,c = 〈∂a, ∂E , ∂c〉. Thus, all gradients involved in the results of this paper
can be expressed completely in terms of the gradients of the conserved quantities of
the gKdV flow, which seems to be desired from a physical point of view.

We now discuss our parametrization of the family of periodic traveling wave so-
lutions of (1.3) more carefully. A major technical assumption throughout this paper
is that the period and mass provide good local coordinates for the periodic traveling
waves of fixed wave speed c > 0. More precisely, given a periodic traveling wave
u(·; a0, E0, c0) of (1.3) with c0 > 0 we assume the map

(a,E) 	→ (T (a,E, c0),M(a,E, c0))

has a unique C1 inverse in a neighborhood of (a0, E0) ∈ R2, which is clearly equivalent
with the nonvanishing of the Jacobian determinant

{T,M}a,E := det

(
∂(T,M)

∂(a,E)

)
at the point (a0, E0, c0). As we will see, the sign of this Jacobian controls the low
frequency analysis presented in this paper. It is worth mentioning that while this
may seem like a rather obscure requirement, this Jacobian has already shown to be
important in the stability theory of periodic traveling waves of the gKdV; see, for
example, [BrJ], [BrJK], [J1], and [J2]. In particular, this Jacobian been computed
in [BrJK] for several power-law nonlinearities and, in these cases, has been shown
to be generically nonzero. Moreover, such a nondegeneracy condition should not be
surprising; a similar nondegeneracy condition must often be enforced in the stability
theory for solitary waves (see [Bo], [Be2], and [PW]).

3. Transverse instability analysis. We now begin our stability analysis. Let
u = u(·; a,E, c) be a T = T (a,E, c)-periodic traveling wave solution of (1.3). More-
over, we assume that u is a stable solution of the one-dimensional gKdV equation.4

As noted in the introduction, it is clear then that u is a y-independent solution of the
generalized KP equation (1.4) for either σ = ±1. We are interested in the spectral
stability of u as a solution of (1.4) to small perturbations. To this end, consider a
small perturbation of u of the form

ψ(x, y, t) = u(x) + εv(x, y, t) +O(ε2), |ε| � 1,

where v(·, y, t) ∈ L2(R) for each (y, t) ∈ R2 and v(x, ·, t) ∈ L∞(R) for each (x, t) ∈ R2.
Forcing ψ to solve the traveling gKP equation

(3.1) (ut − uxxx − f(u)x + cux)x + σuyy = 0

4Else the issue of transverse instability is of no interest, as instabilities to unidirectional pertur-
bations will prevent stability to higher-dimensional perturbations.
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yields a hierarchy of consistency conditions. The O(ε0) equation clearly holds since
u solves (3.1), and the O(ε1) equation reads as

∂x (∂t + ∂xL[u]) v + σvyy = 0,

where L[u] = −∂2x−f ′(u)+c is a periodic Hill operator. As this linearized equation is
autonomous in both time and the spatial variable y, we may seek separated solutions
of the form

v(x, y, t) = e−μt+ikyv(x),

where μ ∈ C, k ∈ R, and v ∈ L2(R). This leads one to the (generalized) spectral
problem

(3.2)
(
∂2xL[u]− σk2

)
v = μ∂xv

considered on the real Hilbert space L2(R). We refer to the background solution u as
being spectrally stable in L2(R) if (3.2) has no L2(R) spectrum with5 �(μ) �= 0 for
any k ∈ R.

Since the coefficients of the differential operator L[u] are T -periodic, as they
depend on the background solution u, standard results in Floquet theory imply the
L2 spectrum of (3.2) is purely continuous and consists entirely of L∞(R) eigenvalues.
Indeed, the fact that (3.2) can have no L2(R) eigenvalues is clear: writing (3.2) as a
first order system of the form

Yx = H(x;μ, k)Y

and letting Φ(x;μ, k) be a matrix solution satisfying the initial condition Φ(0;μ, k) = I
for all (μ, k) ∈ C× R, we define the monodromy operator, or the period map, to be

M(μ) := Φ(T ;μ, k).

Notice that given any vector solution Y of (3.2), the monodromy operator is a matrix
such that

M(μ)Y(x;μ, k) = Y(x+ T ;μ, k)

for all (x, μ, k) ∈ R×C×R. Assuming now for simplicity that Y is an eigenvector of
M(μ) with eigenvalue λ, we clearly have that

Y(NT ;μ, k) = M(μ)NY(0;μ, k) = λNY(0, μ, k).

Thus, if Y(x;μ, k) decays as x → ∞, it must become unbounded as x → −∞. Thus
the best we can hope for is for Y(x;μ, k) to remain bounded on R, which corresponds
in this example to λ ∈ S1, i.e., |λ| = 1. For more details, see [H], for example.

Following Gardner (see [G1] and [G2]), we define the periodic Evans function for
our problem to be

D (μ, k, λ) = det (M(μ, k)− λI) , (μ, k, λ) ∈ C× R× C.

5Usually, one defines spectral stability as the absence of spectrum with positive real part. How-
ever, in our case the spectrum is symmetric about the imaginary axis, and hence spectral stability
is equivalent with the spectrum being confined to the imaginary axis.
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The complex constant λ is called the Floquet multiplier and is related to the class
of admissible perturbations in (3.2). In particular, notice that λ = 1 corresponds
to T -periodic perturbations of the background solution u. Clearly, D(μ, k, λ) is an
entire function of μ and k for each fixed λ ∈ C since the coefficient matrix H(x, μ, k)
depends as such on μ and k. This allows an analytical characterization of the L2(R)
spectrum of (3.2): the generalized spectral problem (3.2) has a nontrivial bounded
solution for a given k ∈ R if and only if there exists a κ ∈ R such that

D(μ, k, eiκ) = 0.

In particular, D(μ, k, 1) = 0 if and only if (3.2) has a nontrivial bounded solution in
L2
per([0, T ]) for a given k ∈ R. Moreover, the following property will be useful in the

low frequency analysis conducted later in the paper.
Lemma 1. The function D(μ, k, λ) is an even function of both μ and k.
Proof. Since the spectral problem

(
∂2xL[u] + σk2

)
v = μ∂xv is invariant under the

transformation k 	→ −k, it follows that D(μ, k, λ) is an even function of k. To analyze
the parity in μ, we write

D(μ, k, λ) = det (M(μ, k) − λI)

= λ4 + a(μ, k)λ3 + b(μ, k)λ2 + c(μ, k)λ+ 1,

where a(μ, k) = − tr (M(μ, k)) and b(μ, k) = 1
2

(
tr(M(μ, k)2)− tr(M(μ, k))2

)
. Since

the spectral problem is invariant under the transformation x → −x and μ → −μ,
it follows that the matricies M(μ, k) and M(−μ, k)−1 are similar, and hence a direct
calculation yields

D(μ, k, λ) = λ4 det

(
M(−μ, k)− 1

λ
I

)
= λ4 + c(−μ, k)λ3 + b(−μ, k)λ2 + a(−μ, k)λ+ 1.

It follows that c(μ, k) = a(−μ, k) and b(μ, k) = b(−μ, k), and hence

D(μ, k, 1) = 2 + a(μ, k) + a(−μ, k) + b(μ, k) + b(−μ, k)
2

.

Thus, D(μ, k, 1) is an even function of μ.
The goal of our analysis is to provide sufficient conditions to ensure that when

0 < |k| � 1, the function μ 	→ D(μ, k, 1) has a nonzero real root, corresponding to an
exponential instability of the underlying wave. To this end, we derive an orientation
index by comparing the high frequency and low frequency (in μ) asymptotics of the
function D(μ, k, 1). In particular, we will see that the sign of D(μ, k, 1) for large real
μ equals the sign of σ. Thus, if the quantity D(0, k, 1) has the opposite sign of σ,
we can infer the existence of a μ∗ ∈ R+ such that D(μ∗, k, 1) = 0, which implies
exponential instability of the background solution. We begin by analyzing the high
frequency behavior of the periodic Evans function.

3.1. High frequency limit. In this section, we study the large real μ behavior
of the periodic Evans function D(μ, k, 1) when k �= 0. To begin, rescale (3.2) with
the change of variables x̃ = |μ|1/3x to obtain (after dropping the tildes) the spectral
problem

(3.3)
(
−∂4x − |μ|−2/3∂2x (f

′(u) + c)− σk2|μ|−4/3
)
v = ∂xv.
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This can be rewritten as a first order system of the form

(3.4) W′ =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
0 −1 0 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
H0(μ)

W +

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
χ A1|μ|−2/3 A2|μ|−2/3 0

⎞
⎟⎟⎠

︸ ︷︷ ︸
B(μ)

W,

where A1 = −2f ′′(u)ux, A2 = −f ′(u) + c, and

χ =
1

2
A1,x|μ|−2/3 − σk2|μ|−4/3.

On a heuristic level then, we expect that the monodromy operator for μ  1 will
behave like

M(μ) ≈ eH0|μ|1/3T ,

and hence

D(μ, k, 1) ≈ det
(
eH0|μ|1/3T − I

)
.

However, the matrix H0 clearly has an eigenvalue of 0, and hence this heuristic ar-
gument leads us to expect that D(μ, k, 1) → 0 as μ → +∞. From the point of view
of an orientation index, this does not provide us with sufficient information: we must
know what the limiting sign of the Evans function is. Thus, although we expect that
D(μ, k, 1) vanishes in the limit as μ→ ∞, we must analyze the situation more closely
to determine if the sign of D(μ, k, 1) has a limiting value. This is the content of the
following lemma.

Lemma 2. For k �= 0, we have the high frequency limit

lim
μ→±∞ sgn (D(μ, k, 1)) = sgn(σ).

Remark 1. Notice this result is somewhat unexpected due to the form of the
rescaled equation (3.3) since the term σk2 enters at only second order in |μ|−2/3. Thus,
this is a very small term compared with the O(|μ|−2/3) terms involved. However, the
following proof will show that, upon averaging, the periodicity of the underlying solu-
tion implies cancelation of the lower order effects, and hence the asymptotic behavior
for large μ must be determined by the higher order terms.

Proof. First, notice that by Lemma 1 it is enough to consider the limit as μ→ +∞
only. Consider the rescaled first order system (3.4) and define ε = |μ|−2/3 � 1. We
refer to the constant matrix H0 as the principle part and regard the matrix B as a
matrix of error terms. We begin by diagonalizing the principle part. To this end, let
λ = 1

2 (1 + i
√
3), and notice if we define the matrix

Q :=

⎛
⎜⎜⎝
−1 −1 −1 1
1 −λ −λ∗ 0
−1 λ∗ λ 0
1 1 1 0

⎞
⎟⎟⎠ ,

then a straightforward calculation yields

Q−1H0Q =

⎛
⎜⎜⎝
−1 0 0 0
0 λ 0 0
0 0 λ∗ 0
0 0 0 0

⎞
⎟⎟⎠ .
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Note that �λ = �λ∗ is positive; hence the real parts of the diagonal entries of the
stable, neutral, and unstable diagonal blocks of Q−1H0Q each have a spectral gap,
one from the other. Using the change coordinates W = QY in (3.4), we can consider
the first order system

Y′ =

⎡
⎢⎢⎣
⎛
⎜⎜⎝
−1 0 0 0
0 λ 0 0
0 0 λ∗ 0
0 0 0 0

⎞
⎟⎟⎠+Q−1BQ︸ ︷︷ ︸

B̃

⎤
⎥⎥⎦Y.

By a brief but tedious calculation, we see that the matrix B̃ takes the block form

B̃ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

O(ε)

1

3
χ

1

3
χ

1

3
χ

(A1 −A2)ε− χ (−λA1 + λ∗A2)ε− χ (−λ∗A1 + λA2)ε− χ χ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the upper left-hand block is 3× 3 and the lower right-hand block is 1× 1. Now
define the T -periodic matrix valued function

S = I4+ε

⎛
⎝ 0 0

−A1 +A2 +
1

2
A1,x −A1 +

λ∗

λ
A2 +

1

2λ
A1,x −A1 +

λ

λ∗A2 +
1

2λ∗A1,x 0

⎞
⎠ ,

where I4 is the standard 4× 4 identity matrix and again the upper left-hand block is
3× 3. Then another straightforward computation implies that

S−1B̃S =

⎛
⎜⎝ O(ε) O(ε)

O(ε3)
1

2
A1,xε+ ε2

(
1

2
A1A1,x − σk2

)⎞⎟⎠
where again the upper left-hand block is 3× 3.

Now noticing that S′ = O(ε3/2) and that S is a O(ε) perturbation of the identity,
it follows that making the variable coefficient change of variables U = SY yields a
first order system of the form

Ux =

⎡
⎢⎣Q−1H0Q+

⎛
⎜⎝ O(ε) O(ε)

O(ε3/2)
1

2
A1,xε+ ε2

(
1

2
A1A1,x − σk2

)⎞⎟⎠
⎤
⎥⎦U.

In particular, we see that the resulting coefficient matrix is approximately block up-
per triangular with error of order O(ε3/2) = O(|μ|−1). Applying Lemma A.1 from
Appendix A (notice that here η = 1, N = O(ε), and δ = O(ε3/2)) and Remark 7 we
find that there is a T -periodic change of coordinates X = ZU of the form

Z =

(
I3 0
Φ 1

)
,
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where Φ = O(ε3/2) is of dimension 1× 3, taking the system to an exact upper block-
triangular form with diagonal blocks

−1 +O(ε),

(
λ 0
0 λ∗

)
+O(ε), and

1

2
A1,xε+ ε2

(
1

2
A1A1,x − σk2

)
+O(ε5/2).

Finally, by the block-triangular form plus periodicity of the coordinate changes
we may compute the periodic Evans function as the product of the periodic Evans
function of the diagonal blocks of this transformed system, integrated over a period
T̃ := T |μ|1/3 going to infinity. The contribution from the stable block is6 approxi-

mately e−|μ|1/3T − 1 and so has sign −1. Similarly, the unstable block gives a positive
sign. The third block, corresponding to the neutral block, gives approximately

exp

(∫ |μ|1/3T

0

(
1

2
A1,xε+ ε2

(
1

2
A1A1,x − σk2

))
(s)ds

)
− 1

= exp
(
−σk2|μ|−1T

)
− 1

∼ −σk2|μ|−1

and hence has the opposite sign as the dispersion parameter σ. Notice, here we have
used heavily the fact that the periodicity of the background solution implies

∫ |μ|1/3T

0

A1,x(x)dx = 0 and

∫ |μ|1/3T

0

A1(x)A1,x(x)dx = 0

and hence yields cancellation in averaging of the lower order terms. Combining these
results, we find that the periodic Evans function has sign sgn(σ) for k �= 0 and μ 1
as claimed.

Notice that one could rework the above proof in the case where the background
solution corresponds to a homoclinic orbit of the traveling wave ODE (2.1). As a
result, Lemma 2 still holds in the solitary wave setting. This result seems to be new
to the literature and may give valuable insight to the transverse instability analysis
in the solitary wave case.

3.2. Low frequency analysis and instability. Now that we have a handle on
the limiting sign of D(μ, k, 1) as μ → ±∞, we turn our attention to determining the
sign of the quantity D(0, k, 1) for |k| � 1. For, once we have this information, we see
that the negativity of the orientation index

σ · sgn (D(0, k, 1))

provides a sufficient condition for transverse instability of the underlying periodic
wave u. To this end, we utilize the methods of [J2], which build off of the methods
of [BrJ], to derive an asymptotic expansion of the function D(0, k, 1) for |k| � 1.
However, it should be pointed out that the analysis in this case is seemingly more
delicate than that considered by [J2] due to the fact that the unperturbed spectral
problem at μ = 0, i.e.,

(3.5) ∂2xL[u]v = 0,

6Notice each of the three subsystems gives real value, since they clearly have real coefficients.
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which does not define a Hamiltonian equation. In particular, this equation is not
reducible to quadrature, and hence one cannot use integrability of the corresponding
traveling wave ODE

(−uxxx − f(u)x + cux)x = 0

to construct a basis for the monodromy operator at μ = 0, k = 0. However, one
can use the integrability of the traveling wave ODE (2.1) for the gKdV equation to
construct7 three linearly independent solutions of (3.5), namely, the functions ux, ua,
and uE are easily seen to satisfy

L[u]ux = 0, L[u]uE = 0, L[u]ua = −1

(see [BrJ] for details) and hence provide a basis of solutions for the differential equation

∂xL[u]v = 0.

Thus, we are missing one null direction of the (formal) operator ∂2xL[u]: we need
a solution to the equation L[u]v = x. However, notice that the functions ux and
uE provide two linearly independent solutions of the differential equation8 L[u]v = 0,
and hence one can use variation of parameters to solve the nonhomogeneous equation.
After a straightforward calculation it is seen that

φ(x) :=

(∫ x

0

suE(s)ds

)
ux(x)−

(∫ x

0

sus(s)ds

)
uE(x)

is linearly independent from ux, ua, and uE and satisfies L[u]φ = x, and hence we
can use these four functions to construct the corresponding monodromy matrix at the
origin. Using perturbation theory then, we should be able to determine how these
functions bifurcate as k varies but remains very small and hence be able to determine
a leading order expansion of the periodic Evans function near k = 0. This is the
content of the following lemma.

Lemma 3. The following asymptotic relation holds in a neighborhood of k = 0:

D(0, k, 1) = −
(
PT −M2

)
{T,M}a,E

(
σk2

)2
+O(k6).

Proof. We begin by writing the linearized equation (3.2) as a first order system
with coefficient matrix

H(x, μ, k) =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1

−σk2 − f ′′′(u)u2x − f ′′(u)uxx −2f ′′(u)ux − μ −f ′(u) + c 0

⎞
⎟⎟⎠ .

We now define the matrix W(x, μ, k) as the matrix solution of the first order system
Y ′ = H(x, μ, k)Y such that

(3.6) W(x, 0, 0) =

⎛
⎜⎜⎝

ux ua uE φ
uxx uax uEx φx
uxxx uaxx uExx φxx
uxxxx uaxxx uExxx φxxx

⎞
⎟⎟⎠ ,

7Notice that here we are considering the traveling wave ODE as a formal differential equation
without any reference to boundary conditions.

8Here, again, we consider the formal operator L[u] without any reference to boundary conditions.



TRANSVERSE INSTABILITY OF gKdV 2693

and we fix the initial condition W(0, μ, k) = W(0, 0, 0) for all (μ, k) ∈ C×R. Defining

δW(μ, k) = W(x, μ, k)
∣∣T
x=0

, a straightforward calculation gives

δW(0, 0)

=

⎛
⎜⎜⎜⎜⎜⎝
0 0 0 −∂u−

∂E

∫ T

0
xux(x)dx

0 V ′(u−)Ta V ′(u−)TE −V ′(u−)
∫ T

0
xuE(x)dx

0 0 0 −T + V ′′(u−)
∂u−
∂E

∫ T

0
xux(x)dx

0 −V ′(u−)V ′′(u−)Ta −V ′(u−)V ′′(u−)TE V ′′(u−)V ′(u−)
∫ T

0 xuE(x)dx

⎞
⎟⎟⎟⎟⎟⎠.

Since δW(0, k) is analytic in k2 by Lemma 1, it follows that

D(0, k, 1) =
det(δW(0, k))

det(W(0, 0, 1))
= O(k4)

for |k| � 1. Moreover, since the first column of the matrix δW(0, k) is O(k2), one
can also easily see that the O(k2) variation in the φ direction contributes to terms in
D(0, k, 1) of order O(k6) near k = 0. Thus, in order to compute the O(k4) variation
in the Evans function, we need only compute the O(k2) variation in the ux, ua, and
uE directions.9

Computing the necessary variations can be done using the variation of parameters
formula. To this end, we define the vector solutions corresponding to ux, ua, uE, and
φ be given by Y1, Y2, Y3, and Y4, respectively, and define

∂

∂k2
Yj(T, 0, k)

∣∣
k=0

= W(T, 0, 0)

∫ T

0

W(x, 0, 0)−1 (Yj(x) · ej) e4dx,

where · represents the standard inner product on R4, ej is the jth column of the
identity matrix on R4, and W(T, 0, 0) = W(0, 0, 0) + δW(0, 0), where

W(0, 0, 0) =

⎛
⎜⎜⎝

0 ∂u−
∂a

∂u−
∂E 0

−V ′(u−) 0 0 0

0 1− V ′′(u−)
∂u−
∂a −V ′′(u−)

∂u−
∂E 0

V ′′(u−)V ′(u−) 0 0 −1

⎞
⎟⎟⎠ .

Moreover, in Appendix B we will show that

(3.7) W(x, 0, 0)−1e4 =

⎛
⎜⎜⎝

−
∫ x

0

∫ s

0 uE(z)dzds
−x∫ x

0
u(s)ds
−1

⎞
⎟⎟⎠ ,

which allows for a straightforward computation of the necessary variations. Thus, we
have

δW(0, k) = δW(0, 0)−

⎛
⎝ 4∑

j=1

∂

∂k2
Yj(T, 0, k)

∣∣
k=0

⊗ ej

⎞
⎠σk2 +O(k4),

9Note that finding a useful expression for the O(k2) variation in the φ direction would be a very
daunting task, since one would have to apply a variation of parameters to solve a problem with
nonhomogeneity which was constructed using a variation of parameters.
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and since det(W(0, 0, 0)) = 1, it follows that

D(0, k, 1) = det

⎛
⎝δW(0, 0)−

⎛
⎝ 3∑

j=1

∂

∂k2
Yj(T, 0, k)

∣∣
k=0

⊗ ej

⎞
⎠σk2

⎞
⎠+O(k6).

Elementary row operations allow one to simplify the matrix involved in the above
determinant. Indeed, a large simplification is possible if one replaces the third row
with the result from multiplying the first row by V ′′(u−) and adding it to the third
row, and similarly replace the fourth row with V ′′(u−) times the second row plus
the fourth row. In particular, these operations imply the fourth entry in the first
column is of order O(k4) and hence does not enter into the calculation. The resulting
expressions are still too long to explicitly write out here, but can be easily handled
by using a computer algebra system. Indeed, a direct calculation yields

D(0, k, 1) =

(
Q1

∂u−
∂E

+Q2
∂u−
∂a

)
V ′(u−){T,M}a,E(σk2)2 +O(k6),

where Q1 = (M2 − PT − MTu− + T 2u2−) and Q2 = (MT − T 2u−). Finally, by
noticing from (2.2) that

V ′(u−)
∂u−
∂E

= 1 and V ′(u−)
∂u−
∂a

= u−,

we have (
Q1

∂u−
∂E

+Q2
∂u−
∂a

)
V ′(u−) =M2 − PT,

which completes the proof.
Remark 2. In [BrJ], Bronski and Johnson derive the low frequency expansion for

the Evans functionDgKdV (μ, κ) for the gKdV equation (1.3) in the spectral parameter
μ. In particular, it was shown that

DgKdV (μ, 1) = −1

2
det

(
∂(T,M,P )

∂(a,E, c)

)
μ3 +O(|μ|4),

and hence an index which detects exponential instabilities to coperiodic perturbations
was derived by comparing the sign of the above Jacobian determinant to the limiting
behavior for μ → +∞. We believe that it would be interesting and beneficial to
derive the corresponding low frequency expansion for the Evans function D(μ, k, κ)
considered in this paper, as it may give a better understanding of the connection
(if there is any) between the generation of transverse instabilities and uni-directional
instabilities. Indeed, such analysis could serve as a starting point for a corresponding
transverse stability analysis of periodic waves. While it seems natural that the above
three-by-three Jacobian determinant should control the (spectral) low frequency limit,
it is not clear how the degeneracy of the gKP equation (corresponding to the extra
x-spatial derivative) affects the situation. In particular, the required calculations seem
to be considerably more complicated than those considered in Lemma 3, and a useful
identification of the leading order behavior for |μ| � 1 is yet to be obtained.

Combining Lemmas 2 and 3, we have a sufficient condition for exponential insta-
bility of a periodic traveling wave of the gKdV to long wavelength transverse pertur-
bations in the gKP equation. This is the content of our main theorem, which we now
state.
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Theorem 1. Let u = u(·; a,E, c) be a periodic traveling wave of the gKdV
equation (1.3). Then u is spectrally unstable to transverse perturbations in the gKP
equation (1.4) if the product σ · {T,M}a,E is positive.

Proof. Clearly the negativity of the orientation index

sgn (D(0, k, 1)) · lim
μ→+∞ sgn (D(μ, k, 1))

for 0 < |k| � 1 implies the desired instability. Since PT − M2 > 0 by Jensen’s
inequality, the result follows by Lemmas 2 and 3.

Remark 3. Notice the instability detected in Theorem 1 is that of spectral trans-
verse instabilities to perturbations which are coperiodic in the x-direction with low
frequency oscillations in the transverse (y) direction. In the solitary wave case, a
general criterion for spectral transverse instability was recently provided by Rousset
ant Tzvetkov [RT1]. While it seems plausible that such a criterion may exist when
the underlying wave is spatially periodic, we must note that the detected instability
would not be to low frequency oscillations in the transverse direction. Indeed, in [RT1]
the transverse frequency must be large enough that the kernel of a particular linear
operator be simple. Once such a frequency k0 �= 0 is found, an implicit function-type
argument is used to prove the existence of a spectral curve μ→ (k(μ), μ) in a neigh-
borhood of μ = 0 with (k(0), 0) = (k0, 0), thus proving spectral instability. In the
present work, however, we are proving the existence of a map k → μ(k) defined for
|k| � 1 such that μ(k) bounded away from zero for all k �= 0 and such that μ(k) is
an eigenvalue of (3.2) for the associated small transverse frequency k.

As previously noted, Theorem 1 is only of interest when the underlying periodic
wave is a stable solution of the corresponding one-dimensional problem. In [BrJK],
the nonlinear (orbital) stability of such solutions to periodic perturbations in the
gKdV equation was studied, and the Jacobian {T,M}a,E was seen to play a signifi-
cant role. Therein, it was shown that such waves can be nonlinearly stable to such
perturbations regardless of the sign of {T,M}a,E, assuming certain conditions on the
perturbation and other geometric quantities related to the underlying wave and the
conserved quantities of the PDE flow. Theorem 1, however, demonstrates the direct
influence the sign of this Jacobian determinant has on the stability to perturbations
in higher-dimensional models (see also the recent work of Johnson [J2] concerning the
transverse instability of periodic gKdV waves in the generalized Zakharov–Kuznetsov
equations where the same Jacobian was seen to control the low frequency behavior of
the corresponding Evans function). In particular, we immediately have the following
interesting (and seemingly unexpected) corollary.

Corollary 1. A periodic traveling wave of the gKdV for which {T,M}a,E �= 0
can never be spectrally stable to transverse perturbations in the gKP equation for both
signs of dispersion.

Remark 4. It should be noted that, unlike the ODE case, there are no general
theorems ensuring that spectral instability implies nonlinear instability. However,
in the recent work [RT3] it was shown in the solitary wave context that, indeed,
spectral transverse instability of KdV waves in the KP-I equation (as described in the
introduction) can be converted to a nonlinear instability result. It seems plausible
that the methods utilized could apply in our case in order to convert Theorem 1 into a
nonlinear instability result (at least in the case of periodic transverse perturbations).
This would be an interesting direction for future investigation.

We now point out several corollaries of Theorem 1. In the case of the KdV
equation (1.1), it is known that all periodic traveling wave solutions are both spectrally
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stable to localized perturbations (see [BD]) and nonlinearly (orbitally) stable to co-
periodic perturbations (see [BrJK] or [J1]). In particular, the transverse stability of
such solutions in the KP equation (1.2) is of interest in this case. Moreover, it was
shown in [BrJK] that the Jacobian {T,M}a,E can be expressed as

{T,M}a,E =
−T 2 V ′ (M

T

)
12 disc (E − V (·; a, c)) ,

where disc(R(·)) represents the discriminant of the polynomial R. Since V ′ is clearly
strictly convex in this case, it follows by Jensen’s inequality that

V ′
(
M

T

)
<

1

T

∫ T

0

V ′(u(x))dx = 0.

For an alternate proof of this fact, see [J2]. Moreover, notice that for any (a,E, c) ∈ R3

for which (2.1) admits a periodic solution of the KdV the equation E = V (u; a, c) has
three solutions in u, and hence the discriminant must be positive. Therefore, we have
that {T,M}a,E > 0 for all periodic traveling wave solutions of the KdV equation.
This proves the following corollary of Theorem 1.

Corollary 2. All periodic traveling wave solutions of the KdV are unstable to
long wavelength transverse perturbations in the KP equation when σ > 0.

It is interesting to note that it is known that all solitary wave solutions of the
KdV are transversely unstable in the KP equation when σ > 0. Thus, Corollary 2
seems to be somewhat expected. Moreover, it turns out that the Galilean invariance
of the KdV implies we can always choose a = 0, and hence (up to translation) the
periodic traveling waves of the KdV form only a two parameter family of solutions.
This family can be expressed explicitly in terms of the Jacobi elliptic function as

u(x, t) = u0 + 12k2κ2 cn2
(
κ
(
x+

(
8k2κ2 − 4κ2 + u0

)
t
)
, k
)
,

where u0 is an arbitrary parameter (taking the role of E) and k is the elliptic modulus.
We refer to such a solution as a cnoidal wave solution of the KdV. As a result of
Corollary 2, it follows that all cnoidal wave solutions of the KdV are unstable to long
wavelength transverse perturbations in the KP-I equation.

We now move on to consider periodic traveling wave solutions of the focusing
mKdV equation

ut = uxxx + u2ux

with positive wave speed c > 0. When a = 0, the corresponding traveling wave ODE
admits two distinct classes of periodic solutions: when E > 0 the wave can again be
expressed in terms of the Jacobi elliptic function cn, while when E < 0 there either
exists no solution (if |E| is sufficiently large) or the solution can be expressed in terms
of the Jacobi elliptic function dn and hence represents a dnoidal wave. In the recent
work of [BrJK], it was shown that both sets of solutions are nonlinearly (orbitally)
stable to coperiodic perturbations, although the cnoidal solutions of sufficiently long
wavelength were shown to be (spectrally) unstable to periodic perturbations of large
period10 (see also [DK]). Moreover, the sign of the Jacobian {T,M}a,E was analyzed

10However, cnoidal waves of smaller period seem spectrally stable to perturbations of sufficiently
large period.
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for both the cnoidal and dnoidal wave solutions of the focusing mKdV11 and was seen
to be positive for all dnoidal solutions and negative for all cnoidal solutions. As a
result, we have the following corollary of Theorem 1.

Corollary 3. All cnoidal wave solutions of the focusing mKdV equation are
unstable to long wavelength transverse perturbations in the focusing mKP equation
with σ < 0, while the dnoidal wave solutions are unstable to such perturbations when
σ > 0.

Continuing, one can use the general elliptic function calculations of [BrJK] in
the case of a power-law nonlinearity f(u) = up+1, p ∈ N, to determine the sign of
the Jacobian {T,M}a,E for any periodic traveling wave solution of (1.3) in terms of
moments of the background solution u with respect to the density

1√
E − V (·; a, c)

.

As such, Theorem 1 can be utilized to provide a transverse instability result for such
power-law nonlinearities. In other cases, it seems that one must (in general) resort to
numerical methods to approximate {T,M}a,E.

4. Conclusions and discussion. In this paper, we analyzed the spectral in-
stability of a periodic traveling wave solutions of the generalized KdV equation to
long wavelength transverse perturbations in the generalized KP equation. In par-
ticular, we constructed a seemingly nonstandard orientation index by comparing the
low and high frequency behavior of the periodic Evans function when the transverse
wave number k is nonzero. We found that in the high frequency limit, the Evans
function D(μ, k, 1) converged to zero as μ → ±∞, which is insufficient to conclude
an instability theory. However, after taking into account higher order effects, it was
found that by the periodicity of the underlying wave and the resulting cancelation in
averaging procedures that the Evans function for nonzero transverse wave numbers
favors a particular sign as μ → ±∞, which is determined precisely by the dispersion
parameter σ; such a phenomenon seems to be new in the literature. Thus, an insta-
bility index follows by comparing the sign of σ with the value D(0, k, 1) for k �= 0.
Utilizing the methods of [BrJ] and [J2] then, we were able to explicitly compute the
leading order variation of the function D(0, k, 1) in k in terms of a Jacobian from the
traveling wave parameters to the period and mass of the background solution. This
Jacobian was shown to be (generically) nonzero in the physically important cases of
the KdV and mKdV equations, and their resulting signs were inferred from the recent
work of [BrJK], immediately yielding instability results in these cases.

It is interesting to note that the Jacobian arising in the low frequency expansion
of the periodic Evans function has already been seen to hold vital information con-
cerning the stability of the periodic traveling wave solutions of the gKdV. Indeed, in
[BrJK] and [J1] this Jacobian arose naturally in the nonlinear stability analysis of such
solutions to periodic perturbations in the gKdV equation, while in [J2] it was seen
again to control the low frequency behavior of the periodic Evans function when con-
sidering the spectral instability of a periodic gKdV wave to long wavelength transverse
perturbations in the generalized Zakharov–Kuznetsov equation (which also arises in
plasma physics). Thus, it would be very interesting to better understand the phys-

11In fact, the situation was analyzed without the restriction of a = 0, in which case all periodic
traveling wave solutions of the focusing mKdV cannot be expressed simply in terms of a Jacobi
elliptic function. However, we consider only the case a = 0 here for simplicity.
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ical meaning of the Jacobian {T,M}a,E, as this may better illuminate the stability
theories described above.

Another interesting direction would be to complement the transverse instability
analysis in this paper with a corresponding stability theory. That is, to derive suffi-
cient conditions to guarantee that a periodic traveling wave solution of the gKdV is
transversely stable to perturbations in the gKP equation. While this certainly may
be possible using the Evans function techniques of this paper, much more delicate
analysis is needed. In the context of the KdV equation, one may be able to use the
integrable structure of the KP-II equation to prove transverse spectral stability. Such
techniques are prevalent in solitary wave theory and have recently been employed
in the periodic wave setting to prove spectral stability to localized perturbations for
several model equations (see [BD], [BDN], and [NB]). When this integrable structure
does not exist, however, it may be more natural to consider a variational characteri-
zation of the stability problem and extend the methods of [GSS1], [GSS2], [J1], and
[BrJK].

We also note that, after the completion of this work, our attention was brought
to the recent work of Rousset and Tzvetkov [RT1] in which the authors considered
the transverse spectral instability of KdV solitary waves to perturbations in the KP-I
equation. In contrast to the ODE techniques utilized in this paper, the authors use
variational techniques to present a rather elegant and simple approach relying only on
properties of the differential operators involved which are rather easy to check (due
to the self-adjointness of the operators involved). We believe it would be interesting
as a future direction of study to see if these techniques could apply in the case where
the underlying wave is spatially periodic and to compare the results to those derived
in this paper. Such a comparison would hopefully help illuminate the mechanism
behind the instability. On the other hand, the ODE techniques used in this paper are
quite robust, allowing for straightforward numerical implementation (plotting Evans
curves and computing winding numbers) and applying not only to equations with
a Hamiltonian-like structure but also to more complicated situations arising in the
context of systems of nonlinear conservation laws. Moreover, the degeneracy in the
high frequency analysis is of independent interest, adding new techniques to the tool
box in the study of nonlinear dispersive waves utilizing asymptotic tracking/reduction
results familiar from shock wave analysis in the conservation law setting.

Finally, as pointed out in the text, the high frequency analysis conducted in this
paper translates directly to the solitary wave setting and hence opens the door to
an analogous instability theory using Evans function techniques. In fact, the high
frequency limit seems easier to discern in the solitary wave case as one does not have
to deal with averaging effects of the coefficient functions. While we have not yet
conducted the relevant low frequency analysis, this could provide valuable insights
concerning the transverse instability of a solitary traveling wave of the gKdV in the
gKP equation.

Appendix A. A block-triangular tracking lemma. Consider an approxi-
mately block-triangular system

(A.1) W ′ = Ap(x)W :=

(
M1 N
δΘ M2

)
(x, p)W,

where Θ is a uniformly bounded matrix, δ(x) scalar, and p a vector of parameters
satisfying a pointwise spectral gap condition

(A.2) minσ(�M1)−max σ(�M2) ≥ η(x) > 0 for all x.
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(Here as usual �N := (1/2)(N + N∗) denotes the “real” or symmetric part of N .)
Then we have the following block-triangular version of the tracking/reduction lemma
of [MaZ3, PZ]. For related results, see [HLZ].

Lemma A.1. Consider a system (A.1) under the gap assumption (A.2), with Θ
uniformly bounded and η ∈ L1

loc. If sup(δ/η)(x) is sufficiently small, then there exists
a unique bounded linear transformation

(A.3) S =

(
I 0
Φ I

)
,

possessing the same regularity with respect to p as do coefficients Mj and N , such
that the change of coordinates W = SZ converts the approximately triangular system
(A.1) to an exactly block-triangular system

(A.4) Z ′ = Ãp(x)Z :=

(
M̃1 Ñ

0 M̃2

)
(x, p)Z,

where

(A.5) M̃1 :=M1 +ΦN, M̃2 :=M2 − ΦN, Ñ := N,

with

sup |Φ| ≤ C sup(δ/η)

and

(A.6) |Φ(x)| ≤ C

∫ +∞

x

e
∫

x
y

η(z)dzδ(y)dy, |Φ(x)| ≤ C

∫ x

−∞
e
∫

x
y

−η(z)dzδ(y)dy,

where the constant C depends only on the size of Θ.
Proof. By the change of coordinates x→ x̃, δ → δ̃ := δ/η with dx̃/dx = η(x), we

may reduce to the case η ≡ constant = 1 treated in [MaZ3]. Dropping tildes, we find
by direct computation that Z = S−1W satisfies (A.4) for S of form (A.3) if and only
if (A.5) and

Φ′ = (M2Φ− ΦM1) +Q(Φ),

where Q is the quadratic matrix polynomial Q(Φ) := δΘ−ΦNΦ. Viewed as a vector
equation, this has the form

Φ′ = MΦ+Q(Φ),

with linear operator MΦ := M2Φ − ΦM1. Note that a basis of solutions of the
decoupled equation Φ′ = MΦ may be obtained as the tensor product Φ = φφ̃∗ of
bases of solutions of φ′ =M2φ and φ̃′ = −M∗

1 φ̃, whence we obtain from (A.2) that

(A.7) eMz ≤ Ce−ηz , for z > 0,

or uniform exponentially decay in the forward direction.
Thus, assuming only that Φ is bounded at −∞, we obtain by Duhamel’s principle

the integral fixed-point equation

(A.8) Φ(x) = T Φ(x) :=

∫ x

−∞
eM(x−y)Q(Φ)(y) dy.

Using (A.7), we find that T is a contraction of order O(δ/η) for Φ on a ball of radius
of the same order; hence (A.8) determines a unique solution for δ/η sufficiently small,
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which, moreover, is order δ/η as claimed. (Here, we are using the normalization
η = 1.) Finally, substituting Q(Φ) = O(δ + |Φ|2) = O(δ) in (A.8), we obtain

|Φ(x)| ≤ C

∫ x

−∞
eη(x−y)δ(y) dy

in x̃ coordinates or, in the original x-coordinates, (A.6). Regularity with respect to
parameters is inherited as usual through the fixed-point construction via the implicit
function theorem.

Remark 5. Although we do not use it here, an important observation of the above
proof is that for η constant and δ decaying at an exponential rate strictly slower than
e−ηx as x→ +∞, we find from (A.6) that Φ(x) decays like δ/η as x→ +∞, while if
δ(x) merely decays monotonically as x→ −∞, we find that Φ(x) decays like (δ/η) as
x→ −∞.

Remark 6. Though we do not use it here, an important observation of [MaZ3, PZ]
is that hypothesis (A.2) of Lemma A.1 may be weakened to

minσ(�M ε
1 )−maxσ(�M ε

2 ) ≥ η(x) + α(x, p) > 0

with no change in the conclusions for any α satisfying a uniform L1 bound |α(·, p)|L1 ≤
C1. (Substitute e

Mx ≤ CeC1e−ηz for (A.7), with no other change in the proof.) This
allows us to neglect commutator terms in some of the more delicate applications of
tracking: for example, the high frequency analysis of [MaZ3].

Remark 7. In the special case where Ap is T -periodic in x, we obtain by unique-
ness that Φ is T -periodic in x as well.

Appendix B. Variation of parameters calculation. In this appendix our
goal is to justify (3.7), which was seen to be a crucial step in the low frequency analysis
of section 3. For brevity, however, we will consider only the most difficult case. To
begin, define the scalar valued function A0(x) := e†1 W(x, 0, 0)−1e4, where W(x, 0, 0)
is defined in (3.6) and † represents the vector adjoint, and note from (3.7) that we
wish to prove A0 = −

∫ x

0

∫ s

0
uE(z)dzds. By definition, we see that

A0 = (uaxxuEx − uaxuExx)φ+ (uauExx − uaxxuE)φx + (uaxuE − uauEx)φxx.

Using (2.2), we have that

uauExx − uaxxu− E = −uaV ′′(u)uE + uE (V ′′(u)ua − 1)

= −uE .
Noting that ∂x (uauEx − uaxuE) = uauExx − uaxxuE, it follows that

uaxuE − uauEx =

∫ x

0

uE(s)ds.

Moreover, using (2.2) along with the fact that

ux (uaxuE − uauEx) = uuE − ua,

it follows that

ux (uaxuExx − uaxxuEx) = −uExux − V ′′(u) (uuE − ua)

= −uExux − V ′′(u)ux (uaxuE − uauEx)

= −uExux − V ′′(u)ux
∫ x

0

uE(s)ds.

Therefore, using the above equalities along with the definition of the function φ, we
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have

A0 =− x

∫ x

0

uE(s)ds

+

((
uEx + V ′′(u)

∫ x

0

uE(s)ds

)
ux − uEuxx + uxxx

∫ x

0

uE(s)ds

)∫ x

0

suE(s)ds

+

(
−
(
uEx + V ′′(u)

∫ x

0

uE(s)ds

)
uE − uEuEx

+ uExx

∫ x

0

uE(s)ds

)∫ x

0

sus(s)ds.

Now as above one can show that(
uEx + V ′′(u)

∫ x

0

uE(s)ds

)
ux − uEuxx + uxxx

∫ x

0

uE(s)ds

= uExux − uEuxx + (V ′′(u)ux + uxxx)

∫ x

0

uE(s)ds

= 1

since uxxx = −V ′′(u)ux by (1.3). Similarly, it follows that

−
(
uEx + V ′′(u)

∫ x

0

uE(s)ds

)
uE − uEuEx + uExx

∫ x

0

uE(s)ds = 0,

and hence

A0(x) = −x
∫ x

0

uE(s)ds+

∫ x

0

suE(s)ds

=

∫ x

0

(s− x)uE(s)ds

= −
∫ x

0

∫ s

0

uE(z)dzds

as claimed. The rest of the derivation of (3.7) is handled similarly, although the
necessary calculations are considerably simpler.

Acknowledgment. Thanks to Jared Bronski, Björn Sandstede, Todd Kapitula,
and Bernard Deconinck for many useful conversations regarding the early stages of this
work. Their comments and suggestions were invaluable to this project. We would also
like to thank a referee for bringing our attention to the work of Rousset and Tzvetkov
and for several helpful comments regarding the structure of the KP equations.

REFERENCES

[APS] J. C. Alexander, R. L. Pego, and R. L. Sachs, On the transverse instability of solitary
waves in the Kadomtsev-Petviashvili equation, Phys. Lett. A., 226 (1997), pp. 187–192.

[Be1] T. B. Benjamin, Instability of periodic wavetrains in nonlinear dispersive systems, Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci., 299 (1967), pp. 59–76.

[Be2] T. B. Benjamin, The stability of solitary waves, Proc. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 328 (1972), pp. 153–183.

[BF] T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water. Part 1.
Theory., J. Fluid Mech., 27 (1967), pp. 417–430.

[BD] N. Bottman and B. Deconinck, KdV Cnoidal Waves are Linearly Stable, Discrete Contin.
Dyn. Syst. Ser. A, 25 (2009), pp. 1163–1180.



2702 MATHEW A. JOHNSON AND KEVIN ZUMBRUN

[BDN] N. Bottman, B. Deconinck, and M. Nivala, Elliptic Solutions of the Defocusing NLS
Equation are Stable, WA, preprint, 2010.

[BrJ] J. C. Bronski and M. Johnson, The modulational instability for a generalized Korteweg-de
Vries equation, Arch. Ration. Mech. Anal., 197 (2010), pp. 357–400.

[BrJK] J. C. Bronski, M. Johnson, and T. Kapitula, An Index Theorem for the Stability of
Periodic Traveling Waves of KdV Type, preprint, 2010.

[Bo] J. L. Bona, On the stability theory of solitary waves, Proc. R. Soc. Lond. Ser. A Math.
Phys. Sci. Eng., 344 (1975), pp. 363–374.

[DK] B. Deconinck and T. Kapitula, On the Orbital (In)stability of Spatially Periodic Station-
ary Solutions of Generalized Korteweg-de Vries Equations, preprint, 2010.

[G1] R. A. Gardner, On the structure of the spectra of periodic travelling waves, J. Math. Pures
Appl. (9), 72 (1993), pp. 415-439.

[G2] R. A. Gardner, Spectral analysis of long wavelength periodic waves and applications, J.
Reine Angew. Math., 491 (1997), pp. 149–189.

[GSS1] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence
of symmetry. I, J. Funct. Anal., 74 (1987), pp. 160–197.

[GSS2] M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence
of symmetry. II, J. Funct. Anal., 94 (1990), pp. 308–348.

[H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math.
840, Springer-Verlag, New York, 1981.
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