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Abstract

In this paper, we consider the spectral stability of spatially periodic traveling wave
solutions of the generalized Korteweg-de Vries equation to long-wavelength perturba-
tions. Specifically, we extend the work of Bronski and Johnson by demonstrating that
the homogenized system describing the mean behavior of a slow modulation (WKB)
approximation of the solution correctly describes the linearized dispersion relation near
zero frequency of the linearized equations about the background periodic wave. The
latter has been shown by rigorous Evans function techniques to control the spectral
stability near the origin, i.e. stability to slow modulations of the underlying solution.
In particular, through our derivation of the WKB approximation we generalize the
modulation expansion of Whitham for the KdV to a more general class of equations
which admit periodic waves with nonzero mean. As a consequence, we will show that,
assuming a particular non-degeneracy condition, spectral stability near the origin is
equivalent with the local well-posedness of the Whitham system.

1 Introduction

In the area of nonlinear dispersive waves the question of stability is of fundamental im-
portance as it determines those solutions which are most likely to be observed in physical
applications. In this paper, we consider the stability of the spatially periodic traveling wave
solutions of the generalized Korteweg-de Vries (gKdV) equation

(1.1) ut = uxxx + f(u)x,
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where u is a scalar, x, t ∈ R and f is a suitable nonlinearity. Such equations arise in a
variety of applications. For example, the case f(u) = u2 corresponds to the well known
Korteweg-de Vries (KdV) equation which arises as a canonical model of weakly dispersive
nonlinear wave propagation [17] [22]. Moreover, the cases f(u) = βu3, β = ±1, correspond
to the modified KdV equation which arises as a model for large amplitude internal waves
in a density stratified medium, as well as a model for Fermi–Pasta-Ulam lattices with
bistable nonlinearity [1] [4]. In each of these two cases, the corresponding PDE can be
realized as a compatibility condition for a particular Lax pair and hence the corresponding
Cauchy problem can (in principle) be completely solved via the famous inverse scattering
transform1. However, there are a variety of applications in which equations of form (1.1)
arise which are not completely integrable and hence the inverse scattering transform can
not be applied. For example, in plasma physics equations of the form (1.1) arise with a
wide variety of power-law nonlinearities depending on particular physical considerations [16]
[18] [19]. Thus, in order to accommodate as many applications as possible, the methods
employed in this paper will not rely on complete integrability of the PDE (1.1). Instead,
we will make use of the integrability of the ordinary differential equation governing the
traveling wave profiles. This ODE is always Hamiltonian, regardless of the integrability of
the corresponding PDE.

The stability of such solutions has received much attention recently. For example, see
[5], [6], [7], [8], [9], [10], [12], [13]. Here, we are interested in the spectral stability to
long wavelength perturbations, i.e. to slow modulations of the underlying wave. There is
a well developed (formal) physical theory for dealing with such problems which is known
as Whitham modulation theory [27] [28]. This formal theory proceeds by rescaling the
governing PDE via the change of variables (x, t) 7→ (εx, εt), then uses a WKB approximation
of the solution and looks for a homogenized system which describes the mean behavior of
the resulting approximation. Heuristically then, one may expect that a necessary condition
for the stability of such solutions is the hyperbolicity– i.e., local well-posedness– of the
resulting first order system of partial differential equations. In order to make this intuition
rigorous, one must study in detail the spectrum of the linearized operator about a periodic
solution in a neighborhood of the origin in the spectral plane, and compare the resulting
low-frequency stability region to that predicted by hyperbolicity of the formal Whitham
expansion.

The first part of this analysis was recently conducted by Bronski and Johnson [6]. There,
the authors studied the spectral stability of spatially periodic traveling wave solutions to
(1.1) to long-wavelength perturbations by using periodic Evans function techniques, i.e.
Floquet theory. In particular, an index was derived whose sign, assuming a particular non-
degeneracy condition holds, determines the local structure of the spectrum near the origin
in the spectral plane. This index arises as the discriminant of a polynomial which encodes
the leading order behavior of the Evans function near the origin for such perturbations: that
is, it describes the linearized dispersion relation near zero frequency of the corresponding

1More precisely, the Cauchy problem for equation (1.1) can be solved via the inverse scattering transform
if and only if f is a cubic polynomial.
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linearized equations about the background periodic wave. Notice that the origin in the
spectral plane is distinguished by the fact that the tangent space to the manifold of traveling
wave profiles can be explicitly computed, and the generalized null space of the corresponding
linearized operator is spanned by a particular basis of this tangent space (again, assuming
a particular non-degeneracy condition is met). In particular, Bronski and Johnson showed
that if one assumes the conserved quantities of the PDE (1.1) provide good local coordinates
for near by periodic traveling waves, then the generalized periodic null space of the linearized
operator is generated by taking specific variations in the parameters defining the periodic
traveling waves. As a result, the linearized dispersion relation near zero frequency can
be explicitly computed in terms of Jacobians of various maps from the traveling wave
parameters to the conserved quantities of the PDE flow. These Jacobians were then shown
to be explicitly computable in terms of moments of the underlying wave in the case of
power-law nonlinearity f(u) = up+1, p ∈ N (see [7]).

The purpose of this paper is to carry out the second part of the program, connecting the
formal Whitham procedure with the rigorous results of [6]. To motivate our approach, recall
that in [28] Whitham caries out the formal modulation approximation for the cnoidal wave
solutions of the KdV equation, in which everything can be evaluated explicitly in terms of
elliptic integrals. As a first step in his analysis, Whitham introduces a periodic potential
function φ with the requirement u = φx where u is a given solution of the KdV equation.
In effect, the introduction of this potential allows for a Lagrangian formulation of the KdV
which can be analyzed via the modulation theory presented in [28]. However, notice that by
requiring the solution u to be of divergence form one is forcing that the solution have mean
zero over one period. This of course presents no problem in the case of the KdV equation
since all solutions can be made mean zero by Galilean invariance, but it does pose a serious
problem when trying to extend Whitham’s method to more general equations of form (1.1)
which admit periodic waves of non-zero mean; for example, the approximation would not
be valid for the well known elliptic function solutions of either the focusing or defocusing
modified KdV equation.

In order to consider more general equations of the form (1.1), it becomes imperative
to find a way to side step this restriction to mean zero waves. To this end we follow the
novel approach suggested by Serre [26], which is to work with the original variable u and
augment the resulting WKB system with an additional conservation law associated with
the Hamiltonian structure/translation invariance of the gKdV; see also the recent work of
Zumbrun and Oh [20] in which this approach was used in the viscous conservation law
setting. As we will see, this approach not only works in the KdV case originally considered
by Whitham, but also for the general Hamiltonian gKdV. In particular, we will see that the
linearized dispersion relation predicted by the linearized Whitham system correctly predicts
(assuming particular non-degeneracy conditions are met) the modulational stability of the
given periodic wave. To this end, we compare the linearized dispersion relation coming from
the modulation approximation to that derived by Bronski and Johnson using Evans function
techniques. Differently from in the works of Serre and Zumbrun and Oh [26, 20], however,
we show the equivalence by an essentially different method using direct computation and
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identities derived in [6] as opposed to direct linear-algebraic comparisons. The remarkable
fact that the resulting homogonized system can be explicitly computed in terms of the
conserved quantities of the PDE flow and the parameters defining the periodic traveling
waves seems to be very special to the case of the gKdV equation (1.1) in which the ODE
defining the traveling wave profiles is completely integrable. We expect that the approach
proposed by Serre to show this equivalence should work in this case as well, by using the
fact that additional conservation laws gives rise to additional first order variations, but the
direct method employed here seems simpler in the present context.

The results in this paper therefore extend the original work of Whitham concerning
the modulational stability of cnoidal waves of the KdV to more general periodic waves
of equations of form (1.1), and also rigorously validate the predictions of the Whitham
expansion as regards linearized stability about a periodic wave. However, as pointed out in
[20, 21], this is only the begining of the story. The importance of the connection between
Whitham expansion and linearized stability comes rather from the predictive power of the
formal expansion in deriving more detailed information about behavior of solutions. See also
the earlier work of Schneider [23, 24, 25] for reaction–diffusion and other equations. Thus,
as in the related contexts [23, 24, 25, 20, 21], we expect the validation of this connection to
lead to further important results about these and other systems.

The outline of this paper is as follows. In section 2 we recall the basic properties of the
periodic traveling wave solutions of (1.1) described in [6] and [13]. In particular, we discuss
a parametrization of such solutions which will be utilized throughout the present work.
In section 3, we outline the results of Bronski and Johnson concerning the low frequency
asymptotics of the periodic Evans function and describe the connection to the modulational
stability of the underlying periodic wave. In section 4, we carry out the slow modulation
(WKB) approximation to derive the Whitham system for the gKdV equation. In particular,
we connect this formal homogenization procedure to the low frequency analysis of Bronski
and Johnson. We then close with a discussion and open problems.

2 Periodic Solutions of the gKdV

Throughout this paper, we are concerned with the periodic traveling wave solutions of the
gKdV equation. To begin then, we recall the basic properties of the periodic traveling wave
solutions of (1.1). For more details, see [6], [7], or [13].

Such solutions are stationary solutions of (1.1) in a moving coordinate frame of the form
x+ ct and whose profiles satisfy the traveling wave ordinary differential equation

(2.1) uxxx + f(u)x − cux = 0.

This profile equation is Hamiltonian and hence can be reduced through two integrations to
the nonlinear oscillator equation

(2.2)
u2
x

2
= E + au+

c

2
u2 − F (u),
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where F ′ = f , F (0) = 0, and a and E are constants of integration. Thus, the existence of
periodic orbits of (2.1) can verified through simple phase plane analysis: a necessary and
sufficient condition is for the effective potential energy V (u; a, c) = F (u)−au− c

2u
2 to have

a local minimum. It follows that the periodic solutions of (2.1) form, up to translation2, a
three parameter family of traveling wave solutions of (1.1) which we can parameterize by
the constants a, E, and c. In particular, on open sets in R3 = (a,E, c) the solution to (2.2)
is periodic: the boundary of these open sets corresponds to the equilibrium solutions and
solitary waves (homoclinic/heteroclinic orbits).

In addition, we make the assumption that there exist simple roots u± of the equation
E = V (u; a, c) which satisfy u− < u+, and that V (u; a, c) < E for u ∈ (u−, u+). As a
consequence, the roots u± are C1 functions of the traveling wave parameters (a,E, c) and,
without loss of generality, we can assume that u(0) = u−. It follows that the period of the
corresponding periodic solution of (2.1) can be expressed by the formula

(2.3) T = T (a,E, c) =
√

2
∫ u+

u−

du√
E − V (u; a, c)

=
√

2
2

∮
Γ

du√
E − V (u; a, c)

,

where integration over Γ represents a complete integration from u− to u+, and then back to
u− again. Notice however that the branch of the square root must be chosen appropriately
in each direction. Alternatively, the contour Γ can be interpreted as a loop (Jordan curve) in
the complex plane which encloses a bounded set containing both u− and u+. By a standard
procedure, the above integral can be regularized at the square root branch points and hence
represents a C1 function of the traveling wave parameters. See [6] for details.

Notice that in general, the gKdV equation admits three conserved quantities3 which can
be represented as

M(a,E, c) =
∫ T

0
u(x)dx =

√
2

2

∮
Γ

u du√
E − V (u; a, c)

(2.4)

P (a,E, c) =
∫ T

0
u(x)2dx =

√
2

2

∮
Γ

u2 du√
E − V (u; a, c)

(2.5)

H(a,E, c) =
∫ T

0

(
u2
x

2
− F (u)

)
dx =

√
2

2

∮
Γ

E − V (u; a, c)− F (u)√
E − V (u; a, c)

du

representing the mass, momentum, and Hamiltonian, respectively. As above, these integrals
can be regularized at the square root branch points and hence represent C1 functions of
the traveling wave parameters. As seen in [6] and related papers, the gradients of the
period, mass, and momentum play a large role in the stability of the periodic traveling
wave solutions of (1.1). For notational simplicity then, we introduce the Poisson bracket

2The translation mode is simply inherited by the translation invariance of the governing PDE and can
hence be modded out in our theory.

3In the case of the KdV or mKdV, the complete integrability of the PDE implies the existence of an
infinite number of conservation laws. We will discuss this case more carefully in the following sections.
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like notation

{f, g}x,y = det
(
∂(f, g)
∂(x, y)

)
for two-by-two Jacobians, and {f, g, h}x,y,z for analogous three-by-three Jacobians.

It should be pointed out that in [6], it was shown when E 6= 0 gradients of the period
can be interchanged for gradients of the conserved quantities via the relation

(2.6) E∇a,E,cT + a∇a,E,cM +
c

2
∇a,E,c +∇a,E,cH = 0,

where ∇a,E,c = 〈∂a, ∂E , ∂c〉. Thus, although all results of this paper will be expressed in
terms of Jacobians involving the quantities T , M , and P , it is possible to re-express them
completely in terms of conserved quantities of the gKdV flow. Such an interpretation seems
possibly more natural and desired from a physical point of view.

3 Evans Function Calculations

Now, suppose u = u(·; a,E, c) represents a particular periodic traveling wave solution of
(1.1). As we are interested in studying the spectral stability of this solution to localized
perturbations, we must study the linearized equation about u0, namely

∂xL[u]v = −vt,

where v ∈ L2(R) and the operator L[u] = −∂2
x − f ′(u) + c is a self adjoint periodic Hill

operator. Taking the Laplace transform in time yields the linearized spectral problem

(3.1) ∂xL[u]v = µv,

where µ represents the Laplace frequency. We refer to the background solution u as being
spectrally stable if the L2 spectrum of the linear operator ∂xL[u] is confined to the imaginary
axis: notice the spectrum is symmetric about the real and imaginary axis.

The spectral analysis in Lp(R), 1 ≤ p < ∞, of differential operators with periodic
coefficients is known as Floquet theory. In this theory, one rewrites the linearized spectral
problem (3.1) as a first order system of the form

(3.2) Yx = H(x, µ)Y

and lets Φ(x, µ) be a matrix solution satisfying the initial condition Φ(0, µ) = I for all
µ ∈ C, where I is the standard 3 × 3 identity matrix. The monodromy operator M(µ), or
the period map, is then defined to be

M(µ) := Φ(T, µ).

Notice that given any vector solution Y of the above first order system, the monodromy
operator acts via the formula

M(µ)Y(x, µ) = Y(x+ T, µ)
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for all x ∈ R and µ ∈ C. In particular, it follows that the L2 spectrum of the operator
∂xL[u] is purely continuous and µ ∈ spec(∂xL[u]) if and only if

det(M(µ)− eiκI) = 0

for some κ ∈ R. Such an equality is equivalent with the existence of a nontrivial solution v
of (1.1) such that

(3.3) v(x+mT ) = eimκv(x)

for all x ∈ R and m ∈ Z, which is equivalent with (3.1) admitting a nontrivial uniformly
bounded solution.

Following Gardner (see [9] and [10]), we define the periodic Evans function for our
problem to be

(3.4) D(µ, κ) = det
(
M(µ)− eiκI

)
, (µ, κ) ∈ C× R.

The complex constant eiκ is called the Floquet multiplier and the constant κ (which is not
uniquely defined) is called the Floquet exponent4. In particular, by the above discussion
we see µ ∈ spec(∂xL[u]) if and only if D(µ, κ) = 0 for some κ ∈ R. Moreover, since the
coefficient matrix H(µ, x) in (3.2) depends analytically on µ, it follows that D is analytic
in the variables µ and κ and is real whenever µ is real.

From a computational viewpoint, however, it is more convenient to define the periodic
Evans function by choosing a basis {Φj(·, µ)}3j=1 of the kernel5 of the linear operator ∂xL[u]−
µ and noticing from (3.4) that

(3.5) D(µ, κ) =
(

det(Φj(0, µ)
∣∣3
j=1

)
)−1

det
(

Φj(T, µ)− eiκΦj(0, µ)
∣∣3
j=1

)
.

This view is particularly convenient in our case; as a consequence of the integrability of
the traveling wave ODE (2.1), one can easily verify that the set of functions {ux, uE , ua} is
linearly independent and satisfy

L[u]ux = 0, L[u]uE = 0, and L[u]ua = −1.

The first of these is a reflection of the translation invariance of (1.1). Thus, taking variations
of the underlying periodic solution u(·; a,E, c) in the traveling wave parameters generate an
explicit basis for the (formal) kernel of ∂xL[u]. In particular, one can easily verify that ux
and a linear combination of ua and uE constitute bonafide T -periodic elements of the kernel
of ∂xL[u], and hence D(µ, 0) = O(|µ|2) for |µ| � 1. Continuing, it follows again from (2.1)
that ∂xLuc = −ux and hence an appropriate linear combination of uc, ua, and uE lies in
the first T -periodic Jordan chain in the translation direction and hence D(µ, 0) = O(|µ|3)
for |µ| � 1. Moreover, one can verify that if the Jacobian {T,M,P}a,E,c is non-zero, then

4By (3.3), the Floquet exponent encodes a class of admissible perturbations.
5Here, we are considering the formal operator ∂xL[u] with out any reference to boundary conditions.
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linear combinations of ux, ua, uE , and uc generate the entire generalized null space of ∂xL[u]
and hence the Evans function should indeed be of order O(|µ|3) near the origin.

Using perturbation theory one can then analyze the way these solutions bifurcate from
the (µ, κ) = (0, 0) state by using (3.5) with Φ1(x, 0), Φ2(x, 0), and Φ3(x, 0) corresponding
to ux, ua, and uE respectively. Moreover, it follows that the quantity

∂

∂µ
Φ1(x, µ)

∣∣∣
µ=0

corresponds to a linear combination of uc, ua, and uE , and that the first order variations in
the ua and uE directions can be computed via variation of parameters. The details of this
asymptotic calculation were carried out in Lemma 2 and Theorem 3 of [6], which we now
recall as the main result of this section.

Theorem 1 ([6]). Assume that {T,M,P}a,E,c is non-zero. Then in a neighborhood of
(µ, κ) = (0, 0) the periodic Evans function admits the following asymptotic expansion:

D(µ, κ) = −µ
3

2
{T,M,P}a,E,c +

iκµ2

2
({T, P}E,c + 2{M,P}a,E) + iκ3 +O(|µ|4 + κ4).

Notice that from Theorem 1, spectral stability in a neighborhood of the origin is equiv-
alent with the cubic polynomial

(3.6) R(y) = −y3 +
y

2
({T, P}E,c + 2{M,P}a,E)− 1

2
{T,M,P}a,E,c

having three real solutions, and hence modulational stability can be inferred from the dis-
criminant of the polynomial R. Indeed, if this discriminant is positive then the polynomial
R has three real roots and hence, using the Hamiltonian structure of the linearized operator
∂xL[u], the spectrum in a neighborhood of the origin consists of a triple covering of the
imaginary axis. If the discriminant is negative, however, then R must have a pair of com-
plex roots y1,2 with non-zero imaginary part and hence the spectrum in a neighborhood of
the origin consists of the imaginary axis with multiplicity one, along with two curves which
are tangent to lines through the origin with angle arg(iy1,2) to the imaginary axis. In par-
ticular, the underlying periodic traveling wave is modulationally unstable in the latter case.
This is the main result of [6] concerning the stability of periodic traveling wave solutions of
(1.1) to long wavelength perturbations.

It should be pointed out that by standard Abelian integral calculations, the Jacobians
arising in Theorem 1 were shown in [7] to be explicitly computable in terms of the traveling
wave parameters and moments of the underlying wave over a period in the case of a power
law nonlinearity f(u) = up+1, p ∈ N. For example, in the case of the KdV equation with
f(u) = u2, it was shown that the discriminant of R takes the form

disc(R(·)) =
(α3,0T

3 + α2,1T
2M + α1,2TM

2 + α0,3M
3)2

disc(E − V (·; a, c))
,
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where the constants αj,3−j represent nonlinear combinations of the traveling wave param-
eters a, E, and c. In particular, it follows that the underlying periodic traveling wave is
modulationally stable provided the equation

E − V (y; a, c) = E + ay +
c

2
y2 − 1

3
y3 = 0

has three real solutions, which is equivalent with the constants (a,E, c) corresponding to
a periodic orbit of the traveling wave equation (2.1). Since every periodic traveling wave
solution of the KdV can be represented in terms of the Jacobbi elliptic function cn(x; γ),
it follows that the cnoidal wave solutions of the KdV are always spectrally stable to long-
wavelength perturbations as predicted by Whitham [28]. A similar representation holds
in the case of the modified KdV equations with f(u) = ±u3 and hence a given periodic
solution u(·; a,E, c) of the modified KdV is modulationally stable provided the polynomial
equation

E + ay +
c

2
y2 − 1

4
y4 = 0

has four real solutions. While the same procedure can be implemented for other power law
nonlinearities f(u) = up+1 with p ∈ N, one must resort to numerical studies to compute the
desired moments of the underlying periodic solution.

Finally, it should also be noticed that taking κ = 0 in the low frequency expansion of
the Evans function provided in Theorem 1 suggests that the stability index

sgn (D(µ, 0)D(Λ, 0))

for real numbers 0 < µ� 1� Λ <∞ is determined6 precisely by the Jacobian {T,M,P}a,E,c.
As a result, the underlying periodic traveling wave solution is spectrally unstable to co-
periodic perturbations if {T,M,P}a,E,c < 0, and (see [6]) is spectrally stable to such per-
turbations provided that {T,M,P}a,E,c and TE > 0. In particular, the low-frequency ex-
pansion in Theorem 1 provides no information for the stability to co-periodic perturbations
in the case where the Jacobian {T,M,P}a,E,c is zero, i.e. when the map

(a,E, c) ∈ R3 → (T (a,E, c),M(a,E, c), P (a,E, c))

is not a local diffeomorphism. Thus, by (2.6), when E 6= 0 the nonvanishing of {T,M,P}a,E,c
is equivalent with the statement that the conserved quantities of the PDE flow defined by
(1.1) provide good local coordinates for nearby periodic traveling waves. This nondegen-
eracy condition has been seen in the stability analysis of periodic gKdV waves in several
other contexts. For example, it appears in the nonlinear (orbital) stability analysis of such
solutions [7] [13] to periodic perturbations, as well in the instability analysis to transverse
perturbations in higher dimensional models [15]. In particular, using the elliptic integral
methods [7] it has been seen that the quantity {T,M,P}a,E,c is generically nonzero for a
wide variety of nonlinearities, including the most physically relevant examples of the KdV

6It was shown in [6] by elementary asymptotic ODE theory that D(Λ, 0) < 0 for Λ > 0 sufficiently large.
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and modified KdV equations. As we will see in the next section, at the level of the Whitham
system this condition is necessary for the resulting first order system of conservations to be
of evolutionary type.

4 Slow Modulation Approximation

We now complement the rigorous results of the previous section with a formal Whitham
theory calculation. In particular, we want to show that the linearized dispersion relation
R(·) in (3.6) can be derived through a slow modulation (WKB) approximation, and hence
that the formal homogenization procedures suggested by Whitham [27] [28] and Serre [26]
correctly describe the stability of the periodic traveling wave solutions of (1.1) to long
wavelength perturbations. To this end, recall from Section 2 that the gKdV admits a four
parameter family T of periodic traveling wave solutions for some triple (a,E, c). We can
thus form the quotient space P := T /R under the relation

(u R v) ⇐⇒ (∃ξ ∈ R; v = u(· − ξ))

and we have the class functions

T = T (u̇), a = A(u̇), E = E(u̇), c = C(u̇).

Similarly, since the conserved quantities are translation invariant it follows that M and P
can be interpreted as class functions on P themselves.

Let (a0, E0, c0) correspond to a particular non-constant periodic solution u0 of (2.1) in
P, that is

u̇0(x) = v̄(x; a0, E0, c0)

for some v ∈ P, where a0 = A(u̇0), E0 = E(u̇0), and c0 = C(u̇0). In particular, from the
discussion in Section 2 it follows that since u0 is nonconstant the projection

u 7→ u̇

T 7→ P

is locally a fibration (where the fibers are circles), and hence P is locally of dimension three.
Now, consider equation (1.1) in the moving coordinate frame x+ c0t:

(4.1) ut = uxxx + f(u)x − c0ux.

A periodic solution of the corresponding traveling wave ODE is a stationary solution of
(4.1), i.e. is a solution with wave speed s = 0 in this moving coordinate frame. Letting
ε > 0, we now rescale (4.1) by the change of variables (x, t) 7→ (εx, εt) so that the rescaled
equation takes the form

(4.2) ut = ε2uxxx + f(u)x − c0ux,
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where, with a slight abuse of notation, x and t now refer to the slow variables εx and εt.
Following Whitham then [27] [28], we consider a solution with a WKB type approxima-

tion of the form

(4.3) uε(x, t) = u0

(
x, t,

φ(x, t)
ε

)
+ εu1

(
x, t,

φ(x, t)
ε

)
+O(ε2),

where y 7→ u0(x, t, y) is an unknown 1-periodic function. It follows that the local period
of oscillation of the function u0 is ε/∂xφ, where we assume the unknown phase a priori
satisfies ∂xφ 6= 0. We now plug (4.3) into (4.2) and collect like powers of ε. The lowest
power of ε present is ε−1 which leads to the equation

φt∂yu
0 = (φx∂y)

3 u0 + (φx∂y) f(u)− c0 (φx∂y)u0.

Defining

(4.4) s = − φt
φx
, and ω = φx,

we find that the O(ε−1) equation is precisely the traveling wave ODE (2.1) in the variable
ωy with wavespeed c0− s. In a similar way as above we may define class functions S and Ω
on P, respectively, associated to the quantities s and ω. Moreover, we may choose u0(x, t, ·)
to be spatially periodic and satisfy the nonlinear oscillator equation

(4.5)

(
u0
y

)2
2

= E + au0 +
c0 − s

2
(
u0
)2 − F (u0),

where a = a(x, t), E = E(x, t), and s = s(x, t) are independent of y. That is, we identify
for each (x, t) ∈ R2 the projection of the function y 7→ u0(x, t, y) into P as being a periodic
traveling wave solution of the gKdV of the form

u̇0(x, t, y) = ū(y;A(u̇0), E(u̇0), c0 − S(u̇0))

for some function ū ∈ P, where we have used the notation from Section 2. In particu-
lar, notice that the parameters (A(u̇0), E(u̇0), S(u̇0)) defining u̇0 in P depend on the slow
variables x and t introduced above.

Continuing, we find that the O(ε0) equation reads

∂tu
0 = ∂xf(u0)− c0∂xu

0 + ∂x
(
φ2
x∂

2
yu

0
)

+ ∂y (· · · ) .

Averaging over a single period in y and rescaling we find

(4.6) ∂t
(
M(u̇0)Ω(u̇0)

)
− ∂xG(u̇0) = 0,

where, using T = T (u̇0) for convenience,

G(u̇0) =
1
T

∫ T

0

(
f(u̇0)− c0u̇

0 + ∂2
y u̇

0
)
dy.
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Using (4.5) and the periodicity of u0 in the variable y, it follows that

G(u̇0) =
1
T

∫ T

0

(
A(u̇0)− S(u̇0)u̇0

)
dy = (A− SMΩ) (u̇0).

Moreover, the Schwarz identity φxt = φtx provides us with the additional conservation law

(4.7) ∂tΩ(u̇0) + ∂x
(
S(u̇0)Ω(u̇0)

)
= 0.

Now, as noted above, the manifold P has dimension three and hence equations (4.6)
and (4.7) do not form a closed system for the unknown function u̇0. In [28] this problem
was remedied in the case of the KdV equation by restricting to mean zero periodic waves,
which forces the equation count to be correct. However, as noted in the introduction, this
requirement can not be implemented in the general case considered here since the gKdV in
general admits periodic waves of non-zero mean. In order to close the system then, we follow
the approach of Serre [26] and augment the above equations with an additional conservation
law arising from the group invariance under translation of the PDE flow generated by (1.1).
The choice of this extra conservation law seems somewhat arbitrary where there is more than
one to choose; for example, in the case of the modified KdV where complete integrability
implies the existence of infinitely many conservation laws. We will return to this point in
Section 5.

To identify a useful conserved quantity in our calculations, notice from Section 3 that
the conserved quantity P must play a significant role in the modulational stability of the
underlying periodic solution. With this as motivation, we notice from (4.1) that(

u2

2

)
t

= u (uxxx + f(u)x − c0ux)

=
(
uf(u) + uuxx − F (u)− c0

2
u2 − (uy)2

2

)
x

.(4.8)

Substituting (4.3) into (4.8) as before and collecting like powers of ε, we find that the O(ε−1)
equation is the traveling wave ODE equation for u0, as before, multiplied by the profile u0,
and averaging the O(ε0) equation over a single period in y yields the conservation law

(4.9) ∂t
(
P (u̇0)Ω(u̇0)

)
− ∂xQ(u̇0) = 0,

where

(4.10) Q(u̇0) =
2
T

∫ T

0

(
u̇0f(u̇0) + u̇0u̇0

yy − F (u̇0)− 1
2
(
u̇0
y

)2 − c0

2
(u̇0)2

)
dy.

Again, using (4.5) one finds that

u0f(u0)− F (u0) =
c0 − s

2
(u0)2 +

(
u0
y

)2
2
− E − u0u0

yy,



4 SLOW MODULATION APPROXIMATION 13

and hence (4.10) reduces to

Q(u̇0) = − 2
T

∫ T

0

(
S(u̇0)

2
(
u̇0
)2 + E(u̇0)

)
dy

= − (SPΩ + 2E) (u̇0).(4.11)

The homogenized system (4.6), (4.7), and (4.9) is a closed system of three conservation
laws in three unknowns, since u̇0 belongs to P. In particular, (4.6)-(4.9) describe the mean
behavior of the WKB approximation (4.3). This system is precisely the Whitham system
we were seeking, and it can be written in closed form as

(4.12) ∂t (MΩ, PΩ,Ω) (u̇0)− ∂x (A− SMΩ,−SPΩ− 2E,−SΩ) (u̇0) = 0.

We now wish to make a connection between the system (4.12) and the modulational stability
of the original solution u0. To this end, we make the assumption that the matrix

(4.13)
∂(u̇0)

∂(a,E, s)

∣∣
(a,E,s)=(a0,E0,0)

is invertible, which implies that nearby periodic waves in P can be coordinatized by the
traveling wave parameters (a,E, c) near (a0, E0, c0). In particular, we can parameterize the
Whitham system in terms of the variables (a,E, s) near (a0, E0, 0) and hence

(4.14) ∂t (Mω,Pω, ω) (a,E, s)− ∂x (a− sMω,−sPω − 2E,−sω) (a,E, s) = 0,

where now we have dismissed the use of the class functions on P previously defined and
work directly with the functions M , P , and T = ω−1 defined on R3 defined in section 2.
Recall that Ω was the class function corresponding to the function ω : R3 → R.

We now linearize (4.14) about the constant solution (a,E, s) = (a0, E0, 0) corresponding
to the original solution u0 chosen above. To begin, notice from the integral representations
(2.3)-(2.5) that

∂s 〈M,P, ω〉 = −∂c 〈M,P, ω〉 ,

and hence assuming the quantity

det
(
∂(Mω,Pω, ω)
∂(a,E, s)

∣∣
(a,E,s)=(a0,E0,0)

)
=

1
T 4
{T,M,P}a,E,c(a0, E0, c0)

is nonzero, the corresponding linearized system is of evolutionary type, i.e.the system (4.12)
is of evolutionary type provided that the conserved quantities of the flow defined by (1.1)
provide good local coordinates for the nearby periodic traveling waves. Recall from Section
2 that this property is generically true for several physically relevant nonlinearities, and is a
major technical assumption in much of the current work on the stability of such solutions.
For details, see again [6], [7], [13], and [15]. Moreover, as the linearization of the Whitham
system (4.7) about the constant solution (a0, E0, 0) is a constant coefficient system of PDE’s,
it can be solved by taking the Fourier-Laplace transform in space-time. In particular, it
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follows the Cauchy problem for the linearized system is locally well posed provided that it
is hyperbolic, which is equivalent with the characteristic equation

(4.15) det
(
µ
∂(Mω,Pω, ω)
∂(a,E, s)

− iκ

T

∂ (a− sMω,−sPω − 2E,−sω)
∂(a,E, s)

)
(a0, E0, 0) = 0

having three real roots in the variable iκ
µT , i.e. the matrix

∂(Mω,Pω, ω)
∂ (a− sMω,−sPω − 2E,−sω)

(a0, E0, 0)

should be uniformly diagonalizable with real eigenvalues.
To make the connection between the above (formal) modulation theory calculation and

the rigorous Evans function theory of the previous section, notice that (4.15) is equivalent
to the vanishing of

(4.16) R̃(µ, κ; a,E, s) = det
(
µ
∂(Mω,Pω, ω)
∂(a,E, s)

− iκ

T

∂ (a− sMω,−sPω − 2E,−sω)
∂(a,E, s)

)
at the point (a0, E0, 0). Moreover, a straightforward computation shows that

R̃(µ, κ; a0, E0, 0) = µ3 det

 Maω MEω −Mcω
Paω PEω −Pcω
−Taω2 −TEω2 Tcω

2

− iκ

µT

 1 0 0
0 −2 0
0 0 −ω


=

2µ3

T 4

(
−R

(
− iκ
µ

)
+ (2Ma − PE − 2Tc)

(
iκ

µ

)2
)
,

where R(·) is the cubic polynomial given in (3.6) encoding the modulational stability of the
periodic traveling wave solution u(·; a0, E0, c0). At first sight, this result is disturbing as it
suggests that the formal WKB/homogenization calculation does not accurately describe the
modulational stability of such solutions. However, this apparent discrepancy can be easily
explained using the integral representations of the period, mass, and momentum given in
(2.3)-(2.5). Indeed, notice from this representation that

Ma = PE = 2Tc = −
√

2
4

∮
Γ

u2 du

(E − V (u; a, c))3/2

and hence we have the relation PE + 2Tc − 2Ma = 0. In particular, it follows that

(4.17) R̃(µ, κ; a0, E0, 0) = −2µ3

T 4
R

(
− iκ
µ

)
.

Notice that the root of the unexpected µ 7→ −µ conversion in (4.17) stems from the fact
that in the Evans function calculation described in Section 3 we considered left moving
waves (waves constant in the moving coordinate frame x + ct), while in homogenization
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calculations of the above form it is customary to use right moving waves. Indeed, from our
definition of s in (4.4) it follows that the quantity φ(x− st) is constant, i.e. φ corresponds
to a right moving plane wave. Since changing right moving waves to left moving waves is
equivalent to time reversal, which in turn arises as a µ 7→ −µ at the level of the linearized
equations, this added negative sign seems necessary in the framework presented here. In
particular, we have proven the following theorem.

Theorem 2. Assume that {T,M,P}a,E,c is non-zero and that the matrix in (4.13) is non-
singular. Then there exists a nonzero constant Γ0 such that the periodic Evans function
admits the following asymptotic expansion in a neighborhood of (µ, κ) = (0, 0):

D(µ, κ) = Γ0R̃(−µ, κ; a0, E0, 0) +O(|µ|4 + κ4).

That is, the linearized dispersion relation arising from the formal WKP approximation
correctly describes the true linearized dispersion relation of the spectrum of the linearization
about the underlying periodic traveling wave at the origin.

Corollary 1. Under the assumptions of Theorem 2, a necessary condition for the spectral
stability of the periodic traveling wave solution u0(·) = u(·; a0, E0, c0) is that the spectrum
of the three-by-three matrix

A(a,E, s) :=
(
∂ (a− sMω,−sPω − 2E,−sω)

∂(a,E, s)

)−1(∂(Mω,Pω, ω)
∂(a,E, s)

)
=

∂(Mω,Pω, ω)
∂ (a− sMω,−sPω − 2E,−sω)

be real at (a0, E0, 0): equivalently, that the Whitham system (4.14) be hyperbolic at (a0, E0, 0).

Proof. First, a straight forward calculation shows that the matrix

∂ (a+ sMω, sPω − 2E,−sω)
∂(a,E, s)

∣∣∣
(a,E,s)=(a0,E0,0)

is invertible provided {T,M,P}a,E,c is non-zero at (a,E, c) = (a0, E0, c0) and the matrix
in (4.13) is nonsingular at this special point. Moreover, if the matrix A(a0, E0, 0) had a
nonzero eigenvalue η, then it follows from Theorem 2 that there is a branch of spectrum
bifurcating from the origin admitting an asymptotic expansion

µ =
iηκ

T
+O(κ2)

for |κ| � 1. Thus, if η has non-zero imaginary part one immediately has a modulational
instability of the underlying periodic traveling wave solution.

It follows that we have established that a necessary condition for the spectral stability
of a periodic traveling wave solution of (1.1) is that the Whitham system (4.6), (4.7),



5 DISCUSSION AND OPEN PROBLEMS 16

and (4.9) be hyperbolic at the corresponding solution. Moreover, from the analysis in [6],
if the matrix A(a0, E0, 0) has only simple real eigenvalues, it follows that the underlying
periodic wave is modulationally stable. Indeed, the Hamiltonian structure of the linearized
operator ∂xL[u] implies the spectrum is symmetric about the imaginary and real axes, and
hence if the matrix A(a0, E0, 0) has real distinct eigenvalues α1, α2, and α3, then there
are three branches µj(κ) which bifurcate from the origin with leading order expansions
µj(κ) = iαjκ

T +O(κ2). If one did not have spectral stability near the origin, then two of the
branches, say µ1 and µ2, would satisfy µ1(κ) = −µ2(κ). It follows by equating like powers
of κ that α1 = α2, contradicting the simplicity of the spectrum of A(a0, E0, 0). Thus, the
strict hyperbolicity of the Whitham system is sufficient to conclude modulational stability
of the underlying wave.

5 Discussion and open problems

In this paper, we have rigorously verified that the formal homogenization procedure intro-
duced by Whitham to study the modulational stability of a periodic traveling wave profile
of the gKdV equation does indeed describe the spectral stability near the origin. This in
particular applies to the KdV case for which the WKB expansion is carried out in Chapter
14 of Whitham [28] by Lagrangian methods making use of integrability to carry out com-
putations in terms of elliptic integrals. (The rigorous connection between the Lagrangian
formulation and the type of WKB expansion carried out here is an important result of [28].)

Recall from Section 4 that there is at first sight a “missing equation” in the WKB equa-
tion for (KdV) and (gKdV). This is remedied in [28] by introducing a “potential” consisting
of the anti-derivative of the solution, thus viewing the equation as a one higher order PDE
for which the equation count is correct. Here, we follow instead the approach suggested by
Serre [26] of augmenting the system by an additional conservation law associated with the
integral of motion coming from Hamiltonian structure. This approach works not only in the
integrable KdV and mKdV cases, but also for the general Hamiltonian (gKdV). The deriva-
tion of the Whitham equations seems also slightly simpler from this point of view. Indeed,
using this approach of Serre together with identities developed by Bronski and Johnson
[6], it seems remarkable that we are able to obtain the Whitham system (4.12) explicitly
in terms of moments of the underlying periodic wave and the traveling wave parameters.
Because of this, the verification that the hyperbolicity of the Whitham system correctly de-
scribes the spectral stability near the origin proved to be much simpler and straight forward
than cases previously considered by Oh and Zumbrun [20] and Serre.

This issue of a missing equation comes up when there are more periodic solutions than
would be generically expected [26], as arises when there is an integral of motion for the
traveling wave profile ODE. Serre states on p. 262 of [26] that “a supplementary integral
has a counterpart at the profile level”, that is, such ODE integrals of motion often come
from conserved quantities. The “supplementary integral” he refers to is exactly an additional
conservation law, which he proposes to use as above to fill the same missing equation it
causes. That is, this same basic approach, by the argument of Serre, should work in a wide
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range of situations.
In situations such as the KdV, where there may be still further conservation laws, there

is flexibility in deriving the Whitham system. However, all such derived systems must be
equivalent. This would appear to correspond to existence for the Whitham system of addi-
tional conservation laws, or hyperbolic “entropies”, another interesting possibility pointed
out by Serre. We here just briefly investigate further the statement of Serre that supplemen-
tary PDE integrals should imply also supplementary traveling wave ODE integrals. We find
justification for this statement in two very general situations. First, we consider a more gen-
eral case in which by a supplementary integral, we mean an “entropy” in the conservation
law sense, i.e., a function η(u) of the unknown and no derivatives such that ∂tη(u) = ∂x(...).
In this case, we claim PDE integrals of motion give rise to integrals of motion of the corre-
sponding traveling wave ODE. Indeed, note the quantity

∫
η(u(x))dx is conserved in time,

and that we have the additional traveling wave relation −sη(u) + q(u) + C = L(u, ux, ...),
where C is a constant of integration and L is an expression of the same order as the
traveling-wave ODE. However, using the existing equations we can eliminate the highest
order derivative to get an algebraic relation between some lower derivatives, i.e., an integral
of motion of the traveling-wave profile ODE. Secondly, in the more specialized Hamiltonian
case, both properties can be inherited from an overarching Lagrangian structure, as in the
multi-symplectic form system studied by many authors. See for example [2, 3]. This may
tie in an interesting way to the variational approach of Witham, although we have not yet
carried out such analysis.

Finally, we cite as open problems the rigorous verification of the Witham approximation
at the level of behavior, either in the small ε limit as in [11], or in large-time behavior as in
[23, 24, 25, 21]. Moreover, it is expected that a similar homogenization procedure can be
used to justify the Whitham equations for the generalized Benjamin-Bona-Mahony equation,
where the low frequency asymptotics were recently computed [14] in a similar way as to the
gKdV case.

Acknowledgement. Many thanks to Jared Bronski for providing several useful insights
into the connection of this work to that presented in [28] by Whitham. Also, we thank the
reviewer for a careful and detailed check of the formulas and derivations presented in section
four.
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