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Introduction

Working definition of stability in ODE/PDE:

A solutions ability to persist when subject to slight perturbation

Practically important: Unstable solutions do not (naturally)
manifest in physical situations, except possibly as transient
phenomena.

Discriminates between physical solutions and mathematical
oddities.

Example: In a mathematical pendulum, the stationary solution
θ = 0 is stable, while θ = π is unstable .... how do we see this?
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Introduction

The equation for an (undamped) mathematical pendulum is

∂2
t θ + sin(θ) = 0.

Clearly θ0 = 0 and θ0 = π solve this equation.Consider a nearby
solution

ψ = θ0 + εθ1 +O(ε2), |ε| � 1

and note by Taylor expansion we have

∂2
t (θ0 + εθ1) + (sin(θ0) + ε cos(θ0)θ1) = O

(
ε2
)

The O(1) equation is clearly satisfied, and O(ε) equation reads

∂2
t θ1 + cos (θ0) θ1 = 0.
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Introduction

If θ0 = 0, the linaerized equation reads

∂2
t θ1 + θ1 = 0

which has solutions θ1(t) = A cos(t) + B sin(t), and hence
nearby solutions oscillate around original stationary solution.

If θ0 = π, linearized equation reads

∂2
t θ1 − θ1 = 0

which has solutions θ1(t) = Aet + Be−t , and hence nearby
solutions exponentially diverge from θ0.

Therefore, θ0 = π is (linearly) unstable while θ0 = 0 is (linearly)
stable.
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Introduction

Stability is inherently a physical issue....
(1) By understanding of mechanism behind instability, one may be able to

stabilize the solution!
Example: In the pendulum example above, the unstable solution
θ0 = π can be stabilized by addition of an appropriate periodic forcing
term:

∂2
t θ + sin(θ) = β cos(t) sin(θ).

(2) Helps us understand how solutions of our approximate model actually
simulate real life.
Example: Light pulses through a fiber optic wire and the single-particle
wavefunction in a Bose−Einstein condensate are modeled by the
GrossPitaevskii equation (nonlinear Schrödinger equation)

iψt + ψxx + ψ|ψ|2 = 0,

but this equation does not take into effect impurities or higher order
nonlinear effects in the wire. Will a solution of this simplified model
persist under the influence of these defects?
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Introduction

Physicists often have a fantastic (and correct!) intuition about
which solutions of a given model are stable, and which are
unstable.

As mathematicians though, we would like to develop a theory
which makes this intuition rigorous!

Example: It is well known in the physics/engineering community
that solutions of a scalar reaction-diffusion equation

ut + uxx = f (u)

which satisfy limx→±∞ ux(x , t) = 0 are stable iff they are
monotone. Thus, fronts are stable but pulses are not.

How do we understand this as mathematicians?

Mathew Johnson (Indiana University) Stability of Modulated GKdV Waves 11/19/09 7 / 35



Introduction

Physicists often have a fantastic (and correct!) intuition about
which solutions of a given model are stable, and which are
unstable.

As mathematicians though, we would like to develop a theory
which makes this intuition rigorous!

Example: It is well known in the physics/engineering community
that solutions of a scalar reaction-diffusion equation

ut + uxx = f (u)

which satisfy limx→±∞ ux(x , t) = 0 are stable iff they are
monotone. Thus, fronts are stable but pulses are not.

How do we understand this as mathematicians?

Mathew Johnson (Indiana University) Stability of Modulated GKdV Waves 11/19/09 7 / 35



Introduction

Physicists often have a fantastic (and correct!) intuition about
which solutions of a given model are stable, and which are
unstable.

As mathematicians though, we would like to develop a theory
which makes this intuition rigorous!

Example: It is well known in the physics/engineering community
that solutions of a scalar reaction-diffusion equation

ut + uxx = f (u)

which satisfy limx→±∞ ux(x , t) = 0 are stable iff they are
monotone. Thus, fronts are stable but pulses are not.

How do we understand this as mathematicians?

Mathew Johnson (Indiana University) Stability of Modulated GKdV Waves 11/19/09 7 / 35



Introduction

Physicists often have a fantastic (and correct!) intuition about
which solutions of a given model are stable, and which are
unstable.

As mathematicians though, we would like to develop a theory
which makes this intuition rigorous!

Example: It is well known in the physics/engineering community
that solutions of a scalar reaction-diffusion equation

ut + uxx = f (u)

which satisfy limx→±∞ ux(x , t) = 0 are stable iff they are
monotone. Thus, fronts are stable but pulses are not.

How do we understand this as mathematicians?

Mathew Johnson (Indiana University) Stability of Modulated GKdV Waves 11/19/09 7 / 35



Introduction

Physicists often have a fantastic (and correct!) intuition about
which solutions of a given model are stable, and which are
unstable.

As mathematicians though, we would like to develop a theory
which makes this intuition rigorous!

Example: It is well known in the physics/engineering community
that solutions of a scalar reaction-diffusion equation

ut + uxx = f (u)

which satisfy limx→±∞ ux(x , t) = 0 are stable iff they are
monotone. Thus, fronts are stable but pulses are not.

How do we understand this as mathematicians?

Mathew Johnson (Indiana University) Stability of Modulated GKdV Waves 11/19/09 7 / 35



Introduction

Let u = u(x) satisfy limx→±∞ ux(x , t) = 0 and

ut = uxx + f (u)

Consider “nearby” solution w(x , t) = u(x) + εv(x , t), v ∈ L2(R)

⇒ vt = vxx + f ′(u)v .

Decompose v(x , t) = eµtv(x), µ ∈ C:

⇒ vxx + f ′(u)v = µv

If u is monotone, can show spec (∂2
x + f ′(u)v) ⊂ (−∞, 0] and

hence perturbations remain bounded in time!

If u is not monotone, then σp (∂2
x + f ′(u)v)

⋂
(0,∞) 6= ∅.
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GKdV

The purpose of this talk is to consider the stability of spatially
periodic waves of the generalized Korteweg-de Vries (gKdV)
equation

ut = uxxx + f (u)x

where f is “nice”. Arise in applications with a variety of
nonlinearities.

f (u) = u2 ⇒ KdV equation. Canonical model for weakly
dispersive nonlinear unidirectional wave propagation.

f (u) = ±u3 ⇒ focusing/defocusing mKdV equation. Arises
naturally in plasma physics as a model for ion acoustic
perturbations.

f (u) = αur+1/2 for r ∈
(
−1

2
, 1

2

)
... has been derived in several

plasma physics models.

Also interesting for mathematical study: f (u) = u5 is L2 critical, and
KdV and mKdV are completely integrable!
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GKdV

Consider traveling wave profile u(x , t) = u(x + ct).
Characteristics:
(1) Constant velocity c
(2) Same shape and profile!

uHx, 0LuHx, tL

ct

x0x0 - ct

Solution is STATIONARY solution of PDE

ut = uxxx + f (u)x − cux .
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GKdV

Wave profile u must satisfy ODE

uxxx + f (u)x − cux = 0

⇒ u2
x

2
= E − F (u)− cu2

2
+ au︸ ︷︷ ︸

V (u;a,c)

, F ′ = f , a,E ∈ R.

V

E1

E2

E3

-1.5 -1.0 -0.5 0.5 1.0 1.5

-0.2

0.2

0.4 E3

E2E2 E1

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.0

-0.5

0.0

0.5

1.0
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GKdV

Periodic traveling waves form a four parameter family P of
solutions

u(x) = u(x + x0; a,E , c)

Translation mode can be modded out: Consider quotient space
P/R where

uRv ⇐⇒ ∃ξ ∈ R : u = v(·+ ξ).

Near any nonconstant solution then, the projection P 7→ P/R is
locally a fibration (where the fibers are circles) and hence P/R is
locally dimension three.

Henceforth, we will identify P and P/R and hence consider P
as a manifold of dimension three.
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GKdV

Objection:True spatially periodic solutions can not exist in
reality!!

What one does see in experiment, however, are solutions which
locally in space-time look spatially periodic, but on larger scales
there is evident slow change in the physical characteristics of the
wave (amplitude, frequency, phase, etc...).

Thus, our spatially periodic solutions are idealized versions of
these slowly modulated periodic waves!

Q: How can one study the stability of these seemingly more
physical nonlinear modulated waves?

A: We treat them as perturbations of the idealized periodic
solutions to slow modulations, ie. to long-wavelength
perturbations.

Q: OK..... how do we do that?!
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Periodic Stability Theory

Let u be T -periodic stationary solution of the nonlinear PDE

ut = uxxx + f (u)x − cux .

Consider nearby solutions of form
ψ(x , t) = u(x) + εv(x , t) +O(ε2), v ∈ L2(R).

⇒ ∂x

(
−∂2

x − f ′(u) + c
)︸ ︷︷ ︸

L[u]

v = −vt

Decompose v(x , t) = e−µtv(x) so v solves the spectral problem

∂xL[u]v = µv

considered on L2(R).

Spectral stability ⇐⇒ spec (∂xL[u]) ⊂ Ri .

This is NOT an eigenvalue problem: Since the operator ∂xL[u]
has periodic coefficients, it can not have decaying eigenfunctions!
Thus, there are no L2 eigenvalues!!
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Periodic Stability Theory

To see this, wite spectral problem as first order system

Y ′(x , µ) = H(x , µ)Y (x , µ).

Period Map (Monodromy): M(µ) = Φ(T , µ), where Φ(x , µ) is
the matrix solution such that Φ(0, µ) = I. Thus, M(µ) is an
operator such that

M(µ)v(x , µ) = v(x + T , µ)

for any x ∈ R and vector solution v(x , µ). For simplicity, assume
that v(x , µ) satisfies

M(µ)v(x , µ) = λv(x , µ)

Then for all n ∈ Z have

v(NT , µ) = M(µ)Nv(0, µ) = λNv(0, µ)

⇒ if v(x , µ)→ 0 as x → +∞, then limx→−∞ |v(x , µ)| = +∞.
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Periodic Stability Theory

Best you can hope for is for v to be uniformly bounded, which
here corresponds to |λ| = 1.

Gives characterization of (continuous) spectrum:

µ ∈ spec(∂xL[u]) ⇐⇒ σ( M(µ))
⋂

S1 6= ∅.

Following Gardner then, we define

D(µ, e iκ) = det
(
M(µ)− e iκI

)
.

Then µ ∈ spec(∂xL[u]) ⇐⇒ D(µ, e iκ) = 0 for some κ ∈ R.

Moreover,

spec (∂xL[u]) =
⋃

κ∈[−π,π)

{
µ ∈ C : D(µ, e iκ) = 0

}
.
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Periodic Stability Theory

How does all this help determine modulational stability?
“FACT”: Stability to slow-modulations equivalent with spectral
stability near µ = 0. Need to study spec (∂xL[u]) near the origin.
By translation invariance of original PDE, have

∂xL[u]ux = 0

Since ux is co-periodic with u, follows that

D(0, 1) = det ( M(0)− I) = 0.

Want to find curve κ→ µ(κ) defined in neighborhood of
(µ, κ) = (0, 0) such that

D(µ(κ), e iκ) = det
(
M(µ(κ))− e iκ

)
= 0.

Would be easy if we could use implicit function theorem, i.e. if

∂µD(µ, 1)
∣∣
µ=0
6= 0.
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Evaluate of ∂µD(µ, 1)
∣∣
µ=0

At µ = 0, {ux , ua, uE} provides three linearly independent
solutions of the formal differential equation

∂xL[u]v = 0.

Thus, can explicitly construct monodromy matrix at µ = 0.

By analyticity of M(µ), have

M(µ) = M(0) + µMµ(0) +O(|µ|2)

We use perturbation theory to find Mµ(µ)....

Variation of parameters formula yields first order variation in ua

and uE columns. Moreover, uc solves

∂xL[u]uc = −ux

Follows that −uc gives first order µ-variation in translation (ux)
direction!!!! Thus, we have constructed Mµ(0).
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Asymptotic Expansion of D(µ, 1)

Taking determinants then, we have

d

dµ
D(µ, 1) = det

(
M(0) + µMµ(0)− I +O(|µ|2)

) ∣∣
µ=0

= 0

⇒ Implicit Function Theorem fails!!!!!

We need to determine next order term Mµµ(0). Can be done by
using variation of parameters again!

Not as bad as it sounds: only need second order variation in ux

direction, which is given by the first order variation in uc

direction (first order calc!).
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direction, which is given by the first order variation in uc

direction (first order calc!).
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Asymptotic Expansion for D(µ, 1)

Ugly algebra yields

D(µ, 1) = −1

2

∂(T ,M ,P)

∂(a,E , c)︸ ︷︷ ︸
{T ,M,P}a,E ,c

µ3 +O(|µ|4).

where T =period and M and P refer to the mass and
momentum:

M =

∫ T

0

u(x)dx P =

∫ T

0

u(x)2dx

M and P are conserved quantities of the gKdV flow!

Thus, D(µ, 1) = O(|µ|3) and hence more care is needed to use
the implicit function theorem.

In particular, follows there are in general three branches of
spectrum which bifurcate from the µ = 0 state for |κ| � 1.
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Modulational Instability

Continuing above computations, local analysis around
(µ, κ) = (0, 0) yields

D(µ, e iκ) = iκ3 +
iκµ2

2
({T ,P}E ,c + 2{M ,P}a,E )

− µ3

2
{T ,M ,P}a,E ,c +O(|µ|4 + κ4)

where the notation {f , g}x ,y is used for two-by-two Jacobians.

Defining z = iκ
µ

, we see z must be a root of

P(z) = −z3 +
z

2
({T ,P}E ,c + 2{M ,P}a,E )− 1

2
{T ,M ,P}a,E ,c .

and hence have modulational stability when P has three real
roots!
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Modulational Instability: M.J. & Bronski (2008)

Define

∆MI :=
1

2
({T ,P}E ,c + 2{M ,P}a,E )3 − 27

4
{T ,M ,P}2a,E ,c .

∆MI > 0 ∆MI < 0
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Whitham Theory

Physicists have had a formal approach of such modulational
stability arguments for years (at least 1973) which has been
dubbed Whitham theory!

Introduce slow variables εx and εt and note the idealized is
constant in the slow variables.

Consider the original PDE in the slow variables and linearize
about the idealized constant solution... after averaging, yields a
constant coefficient system of PDE!

Expectation: The stability of the constant (idealized) solution in
the averaged-slow variable system should appropriately describe
the stability of the original modulated wave.

Problem: This argument has only been justified in a few
(special) cases, but has never been seen to be wrong!
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Whitham Theory for GKdV

In slow variables, gKdV reads

ut = ε2uxxx + f (u)x

Consider WKB approximation

uε(x , t) = u0

(
x , t,

φ(x , t)

ε

)
+ εu1

(
x , t,

φ(x , t)

ε

)
+O(ε2)

where y → u0(x , t, y) is an unknown 1-periodic function.
Substitute this into rescaled gKdV and collect powers of ε.

O(ε−1): φ3
x∂

3
yu

0 + φx∂y f (u0)− φx∂yu
0 = 0. Defining ω = φx

and s = − ∂t

∂x
, may choose

u0(x , t, y) = ū
(
ωy ; a(u0),E (u0),−s(u0)

)
, ū ∈ P

where a,E , s depend on slow variables x , t through u0.
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Whitham Theory for GKdV

O(ε0):

∂tu
0 = ∂x f (u0) + ∂xu

0 + ∂x

(
φ2

x∂
2
yu

0
)

+ ∂y (· · · )

Averaging over single period in y yields conservation law

∂t

(
M(u0)ω(u0)

)
− ∂xG (u0) = 0

where M(v) =
∫ T

0
v(x)dx and G (v) = 1

T

∫ T

0

(
f (v) + ∂2

yu
0
)
dy .

Another conservation law comes from Schwarz identity φxt = φtx :

∂tω(u0) = ∂t (∂xφ) = ∂x

(
−∂tφ

∂xφ
· ∂x

)
= −∂x

(
s(u0)ω(u0)

)
.

This provides two equations for u0, but P is three dimensional!!

Q: How do we close the system?
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Whitham Theory for GKdV

Whitham’s Trick: Restrict to mean zero waves, i.e. consider
u0 = ∂xv

0 for some v0 ∈ P (provides Lagrangian formulation).

This ends up providing additional conservation law that closes
the Whitham system.

This trick works fine for KdV waves (all waves can be made
mean zero by Galilean invariance), but there are lots of physical
solutions of gKdV which are not mean zero..... now what?!
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Whitham Theory for GKdV

So far in Whitham calc., the period T = 1
ω

and the mass play a
role:

(Mω)t − Gx = 0, ωt + (sω)x = 0

but we have not seen the momentum enter in.... but it must play
a role from our previous (rigorous) work!

This gives us motivation for how to close the Whitham system:
From the gKdV we find that(

u2

2

)
t

=

(
uf (u) + uuxx − F (u)−

u2
y

2

)
x

and using the WKB expansion as before we find upon averaging
the O(ε0) equation the third conservation law

(Pω)t − Qx = 0.
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Whitham Theory for GKdV

With the addition of this extra conservation law, we now have
three equations for the three dimensional unknown u0 ∈ P .

Assuming (a,E , c) are good local corrdinates on P , we can write
the Whitham system as

∂t (Mω,Pω, ω)− ∂x (a − sMω,−sPω − 2E ,−sω) = 0

where now these are considered as functions of (a,E , s) ∈ R.

To determine the stability of a particular constant solution
corresponding to (a,E , s) = (a0,E0,−c0), following the physicists
intuition we linearize the above system at this point.
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Whitham Theory for GKdV

The resulting linear system is has constant coefficients, and
hence we can determine its stability by Fourier Transform
techniques: need the characteristic polynomial

P(µ, κ) =

det

(
µ
∂ (Mω,Pω, ω)

∂(a,E , s)
− iκ

T

∂ (a − sMω,−sPω − 2E ,−sω)

∂(a,E , s)

)
have three real roots in the variable iκ

µT
at

(a,E , s) = (a0,E0,−c0).

Equivalent to hyperbolicity (i.e. local well-posedness) of
Whitham system!

Q: Does this polynomial agree with the leading order behavior of
the Evans function?
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Whitham Theory Vs. Evans Function Techniques: M.J. &
Zumbrun (2009)

Direct (ugly) calculation shows that

D(µ, e iκ) = Γ0P(−µ, κ) +O(|µ|4 + κ4)

Thus, just as the physicists said, Whitham theory correctly
describes modulational stability of a given periodic traveling wave
of the gKdV!!!!!
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Computation?

OK, so you have an expression which “determines” when a
particular wave is modulationally stable..... can you compute it?!
YES!!!
(1) For power-law nonlinearities (f (u) = up+1) with p ∈ N, can determine

explicit formula for MI index in terms of moments of the underlying
wave.

(2) For non-power-law, must rely on numerics..... but at least you now
have a determined quantity to do numerics on!
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Modulational Theory for KdV

In case of KdV

ut = uxxx +

(
u2

2

)
x

,

can express conserved quantities and period as integrals of closed
cycles over a Riemann surface, and hence we can compute MI
index using elliptic function calculations (Picard-Fuchs system).
Get

∆MI = C0 ·
N2

disc(P(a,E , c))

where C0 > 0 and

P(a,E , c) = E + au +
c

2
u2 − u3

6
.

Notice disc(P(a,E , c)) > 0 iff the corresponding solution is
periodic, so all periodic waves of KdV are modulatioanlly
stable!!!!
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Modulational Theory for mKdV f (u) = u3 (with positive
wavespeed)
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L2-Critical KdV f (u) = u5(with positive wavespeed)

Mathew Johnson (Indiana University) Stability of Modulated GKdV Waves 11/19/09 34 / 35



Conclusions:

Have extended modulation arguments of Whitham for KdV to
non-zero mean waves of gKdV.

Outline of Rigorous Theory: Integrability of traveling wave ODE
⇒ generalized null-space of linearized operator can be “explicitly
computed”. Once this is in hand, perturbation theory and elbow
grease does the rest!

Have rigorous verification of Whitham theory for gKdV type
equations.

Techniques are VERY general.... could open the door to multiply
periodic waves (big applications in fluid mechanics).

Thank you!
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