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Abstract

There is a result of Klaus and Shaw which shows that the
Zakharov-Shabat eigenvalue problem has discrete spectrum which lies on
the imaginary axis if the potential has a single critical point and decays
monotonically away from this point (the potential is monomodal). We put
this calculation in the context of the Krein signature (a tool for studying
the stability of symplectic matrices) and prove an analogous theorem for
the eigenvalue problem which solves the Sine-Gordon equation (in
laboratory coordinates). This is joint work with Jared Bronski.
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Introduction

We consider the Cauchy problem for the Sine-Gordon equation in
laboratory coordinates:

uxx − utt = sin u

u(x , 0) = u(x)

ut(x , 0) = v(x)

Toy Model: Consider an infinite wire with a continuum of coupled
pendulums, with the pendulum at position x at time t hanging with
angle u(x , t) with respect to its rest position.
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Introduction

Assumptions on u: u ∈ C 1(R), limx→±∞ u(x) = 2πk±

Define Qtop := 1
2π

∫∞
−∞ u′(x)dx = k+ − k− to be the “topological

charge” of the potential u.

We consider only initial data with topological charge 0 (breathers) or
±1 (kinks).
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Introduction

This equation is integrable via the Inverse Scattering Transform with
corresponding spectral problem (Faddeev-Tahktajan / Kaup)

4Φx =

(
z − 1

z

)
τ1 cos

(u

2

)
Φ +

(
z +

1

z

)
τ2 sin

(u

2

)
Φ− vτ3Φ (1)

considered on L2(dx ; C), where z ∈ C, Φ =

(
φ1

φ2

)
,

u = u(x , 0)
v = ut(x , 0)

and

τ1 =

(
−i 0
0 i

)
, τ2 =

(
0 i
i 0

)
, τ3 =

(
0 1
−1 0

)
.

”Main Result”: Under certain conditions on u and v , one must have
z ∈ S1.
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Known Results

Characteristic coordinates χ = x+t√
2

, η = x−t√
2

⇒ uχη = sin(u).

This is the isospectral flow for the Zhakarov-Shabat system

v1,χ = −izv1 + qv2

v2,χ = izv2 − q∗v1

where q is related to the initial data, z ∈ C, and ∗ denotes complex
conjugation.

We have

Theorem (Klaus & Shaw (2001, 2002))

If q : R→ R is in L1 ∩ C 1 and has only one critical point (a local max),
then the discrete spectrum lies on the imaginary axis in the z−plane.
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Known Results

FACT: that the phase of the potential q is related to the momentum
of the initial pulse, with zero phase corresponding to with zero initial
momentum, i.e. stationary initial data.

FACT: For Z-S system, eigenvalues on Ri correspond to stationary
solitons.

Klaus-Shaw result states that, under certain monotonicity conditions,
a pulse with zero initial momentum give rise to solitons with zero
momentum.

In laboratory coordinates, initial data with zero initial momentum
corresponds to v(x) = ut(x , 0) = 0 and stationary solitons correspond
to z ∈ S1.

Buckingham & Miller (2008): If one takes initial data which satisfies

sin(u(x)/2) = sech x , cos(u(x)/2) = tanh(x), v(x) = 0,

eigenvalues are confined to unit circle and are simple. Notice such a
potential is monotone with Qtop = −1.
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Main Theorem

Recall (1) is given by

4Φx =

(
z − 1

z

)
τ1 cos

(u

2

)
Φ +

(
z +

1

z

)
τ2 sin

(u

2

)
− vτ3Φ

Theorem (Bronski & M.J.)

Consider the Sine-Gordon equation in laboratory coordinates. Let
v = ut(x , 0) = 0 and let u = u(x , 0) be such that one of the following
conditions holds:

1 u is monotone with Qtop = ±1, or

2 u has Qtop = 0 and is monomodal with a positive maximum u0 ∈ (0, π).

Then the discrete spectrum of (1) is simple and lies on the unit circle.

Main analytical tool: Krein signatures, i.e. functionals on L2 which
encode information about eigenvalues and eigenspaces.
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Symmetries

As we will see, Krein signatures are built in such a way to abuse the
symmetries of the discrete spectrum. So, we begin with the following
lemma:

Lemma

The symmetry group of the discrete spectrum of (1) is Z2 × Z2 × Z2,
corresponding to reflection across the real and imaginary axis, as well as
the unit circle.

X X

X X

XX

X X
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Krein Signatures

Suppose we can write (1) as

Mv = zv

Symmetries ⇒ “M ∼ M−†”.

If U is such that M†UM = U, define the associated KREIN
SIGNAGURE to be

κ(v) := 〈v ,Uv〉

for v ∈ L2.

Basic Result: If Mv = λv ,

κ(v) 6= 0⇒ λ ∈ S1
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Krein Signatures

PROOF:
λκ(v) = 〈v ,Uλv〉 = 〈v ,UMv〉

=
〈

v ,M−†Uv
〉

=
〈
M−1v ,Uv

〉
= (λ)−1κ(v)

Thus, (
λ− 1

λ

)
κ(v) = 0

which proves the claim.
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Strategy for Confinement

Determine the symmetries of the discrete spectrum of (1).

Construct Krein signature κ corresponding to reflection about S1.

Prove κ(v) 6= 0 for any eigenfunction v .
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More Krein Signatures

Moreover, κ(v) 6= 0 implies eigenspace is semi-simple, i.e. the
eigenspace is diagonalizable.

Claim: For 2nd order ODE eigenvalue problems, semi-simple implies
simple.

Proof: The existence of a semi-simple eigenspace of multiplicity
higher than one implies ∃ two linearly independent solutions decaying
as x →∞. This contradicts the asymptotic behavior of the Jost
solutions.�
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Example

It is possible to generalize the above theory to different spectral
symmetries.

The Zakharov-Shabat eigenvalue problem (for real potentials) is given
by Mv = λv on L2(dx ; R), where

M =

(
i∂x −iq(x)
−iq(x) −i∂x

)
⇒ M ∼ −M†.

M satisfies UM = −M†U for U =

(
0 1
1 0

)
(corresponding to

reflection of spec(M) about Ri).

κ = 〈φ,Uφ〉L2 =

∫
R

(φ∗1φ2 + φ∗2φ1) dx .

This is exactly the quantity Klaus and Shaw consider in their papers.
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Krein Signatures

Lemma

The eigenvalue problem (1) can be written as Mv = λv, where the
operator M above satisfies M†UM = U where U is of the form

0 0 cos
(

u(x)+π
2

)
− sin

(
u(x)+π

2

)
0 0 sin

(
u(x)+π

2

)
cos
(

u(x)+π
2

)
− cos

(
u(x)+π

2

)
− sin

(
u(x)+π

2

)
0 0

sin
(

u(x)+π
2

)
− cos

(
u(x)+π

2

)
0 0

 .

z = re iθ ⇒

κ = i 〈Φ,UΦ〉L2

= sin θ

∫
R

sin
(u

2

)
|Φ|2dx − i cos θ

∫
R

cos
(u

2

)
〈Φ, τ3Φ〉 dx
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Topological Charge ±1: Confinement Result

First Main Result:

Theorem

Let u(x) be a monotone potential satisfying u(x)→ 0 as x → −∞ and
u(x)→ 2π as x →∞, i.e. u has topological charge Qtop = 1. Then the
discrete spectrum of (1) lies on the unit circle and is simple.

Proof: Boundary Conditions⇒ φ2 generically grows exponentially as
x → ±∞. Suggests we should express κ in terms of φ2:

Using original eigenvalue problem, eventually get

κ = 2

(
r +

1

r

)∫
R

sin(θ)

sin(u/2)
|φ2|2dx + 2

∫
R

ux

sin2(u/2)
|φ2|2dx > 0.

This completes the proof.
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r +

1

r
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R

sin(θ)

sin(u/2)
|φ2|2dx + 2

∫
R

ux

sin2(u/2)
|φ2|2dx︸ ︷︷ ︸

limx→±∞ φ2(x)=0

> 0.
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Topological Charge 0: 0 < u0 ≤ π
2

u0/2

u0/2

Eigenvalues below this line lie on
unit circle

All eigenvalues lie below this line

⇒ All eigenvalues lie on unit circle.
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Topological Charge 0: π
2 < u0 < π

u0/2

u0/2

unit circle here
Eigenvalues lie on 

Eigenvalues lie below this line
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Topological Charge 0: π
2 < u0 < π

We will count the number of eigenvalues in two different ways:
1 As you vary u0, count how many times an eigenvalue either emerges

from or gets absorbed into the continuous spectrum (homotopy
argument). Yields upper bound.

2 Count number of points on S1 which correspond to an eigenvalue
(winding number argument). Clearly gives lower bound.

Upper and lower bound agree!!!!

Theorem

If Qtop = 0 and u0 ∈ [0, π), let N be the largest non-negative integer such
that ∫ ∞

−∞
sin
(u

2

)
dx > (2N − 1)π

Then there exists exactly N eigenvalues of (1), all of which are on the unit
circle and are simple.
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Possible Extensions

NUMERICS: Tentative numerical experiments indicate the result for
Qtop = ±1 is tight: monotone kinks of higher topological charge and
non-monotone kinks of topological charge ±1 frequently have
eigenvalues off S1.

Similar experiments on breather like potentials suggests this result
may be improved to the case 0 < u0 < 2π. This is further supported
by the fact that the winding number in the symplectic group is
monotone until u0 = 2π.

Thank You!
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