The Transverse Instability of Periodic Traveling Waves in the Generalized Kadomtsev-Petviashvili (KP) Equation

Mathew A. Johnson
Indiana University
(NSF/Zorn Postdoctoral Fellow)

August 18, 2010

Joint work with Kevin Zumbrun (IU)

gKP Equations

- The gKP equations are given by

$$
\left(u_{t}-u_{x x x}-f(u)_{x}\right)_{x}+\sigma u_{y y}=0, \quad \sigma= \pm 1
$$

Weakly two-dimensional version of the gKdV equation

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Special Case: $f(u)=\frac{1}{2} u^{2}$ (KdV-nonlinearity)

- KP-I if $\sigma=+1$: model for thin films with high surface tension.
- KP-II if $\sigma=-1$: model for water waves with small surface tension.

gKP Equations

- The gKP equations are given by

$$
\left(u_{t}-u_{x x x}-f(u)_{x}\right)_{x}+\sigma u_{y y}=0, \quad \sigma= \pm 1
$$

Weakly two-dimensional version of the gKdV equation

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Special Case: $f(u)=\frac{1}{2} u^{2}$ (KdV-nonlinearity)

- KP-I if $\sigma=+1$: model for thin films with high surface tension.
- KP-II if $\sigma=-1$: model for water waves with small surface tension.
- Other multi-d generalizations exist: gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x}
$$

but KP has extra degeneracy which presents interesting mathematical difficulty.

gKP Equations

- The gKP equations are given by

$$
\left(u_{t}-u_{x x x}-f(u)_{x}\right)_{x}+\sigma u_{y y}=0, \quad \sigma= \pm 1
$$

Weakly two-dimensional version of the gKdV equation

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Special Case: $f(u)=\frac{1}{2} u^{2}$ (KdV-nonlinearity)

- KP-I if $\sigma=+1$: model for thin films with high surface tension.
- KP-II if $\sigma=-1$: model for water waves with small surface tension.
- Other multi-d generalizations exist: gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x}
$$

but KP has extra degeneracy which presents interesting mathematical difficulty.

- Take Away: Solutions of gKdV $=$ unidirectional (y-independent) solution of $g K P$.

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:
- $\sigma>0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:
- $\sigma>0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
- $\sigma<0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:
- $\sigma>0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
- $\sigma<0 \Rightarrow$ depends on nonlinearity. KdV : transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
- Results based on multi-scale analysis...

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:
- $\sigma>0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
- $\sigma<0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
- Results based on multi-scale analysis...
- Few answers for spatially periodic waves:

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:
- $\sigma>0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
- $\sigma<0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
- Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
- (Haragus-2010) Small amplitude limit in KdV: $\sigma<0$ stable, $\sigma>0$ unstable. (Finished after our work?)

gKP Equations

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim _{x \rightarrow \pm \infty} u(x)=0$:
- $\sigma>0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
- $\sigma<0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
- Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
- (Haragus-2010) Small amplitude limit in KdV: $\sigma<0$ stable, $\sigma>0$ unstable. (Finished after our work?)
- Others????

Periodic Traveling Waves

Seek traveling wave solutions of gKdV

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Periodic Traveling Waves

Seek traveling wave solutions of gKdV

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Stationary solution in moving coordinate frame $x-c t$:

$$
u_{x x x}+f(u)_{x}-c u_{x}=0
$$

Periodic Traveling Waves

Seek traveling wave solutions of gKdV

$$
u_{t}=u_{x x x}+f(u)_{x} .
$$

Stationary solution in moving coordinate frame $x-c t$:

$$
u_{x x x}+f(u)_{x}-c u_{x}=0
$$

Integrable: \exists constants $a, E \in \mathbb{R}$ such that

$$
\frac{u_{x}^{2}}{2}=E-\underbrace{\left(\int^{x} f(u(z)) d z-\frac{c}{2} u^{2}-a u\right)}_{V(u ; a, c)}
$$

Periodic Traveling Waves

Seek traveling wave solutions of gKdV

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Stationary solution in moving coordinate frame $x-c t$:

$$
u_{x x x}+f(u)_{x}-c u_{x}=0
$$

Integrable: \exists constants $a, E \in \mathbb{R}$ such that

$$
\frac{u_{x}^{2}}{2}=E-\underbrace{\left(\int^{x} f(u(z)) d z-\frac{c}{2} u^{2}-a u\right)}_{V(u ; a, c)}
$$

- Solitary waves: bdry conditions $\Rightarrow a=E=0$.

Periodic Traveling Waves

Seek traveling wave solutions of gKdV

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

Stationary solution in moving coordinate frame $x-c t$:

$$
u_{x x x}+f(u)_{x}-c u_{x}=0
$$

Integrable: \exists constants $a, E \in \mathbb{R}$ such that

$$
\frac{u_{x}^{2}}{2}=E-\underbrace{\left(\int^{x} f(u(z)) d z-\frac{c}{2} u^{2}-a u\right)}_{V(u ; a, c)}
$$

- Solitary waves: bdry conditions $\Rightarrow a=E=0$.
- \exists (mod translations) three parameter family of periodic traveling wave solutions of $g K d V$, parameterized by (a, E, c).

Transverse Stability

- Given a $T=T(a, E, c)$ periodic solution $u(x ; a, E, c)$ of $g K d V$, want to determine stability in gKP.

Transverse Stability

- Given a $T=T(a, E, c)$ periodic solution $u(x ; a, E, c)$ of $g K d V$, want to determine stability in gKP.
- Strategy: linearize gKP about wave $u(x, y):=u(x ; a, E, c)$

$$
\partial_{x}(\underbrace{\partial_{x} \mathcal{L}[u]}_{\text {lin. gKdV }}) v+\sigma v_{y y}=v_{x t}, \quad v(\cdot, y, t) \in L_{\text {per }}^{2}([0, T]),
$$

and take transforms (Fourier in y, Laplace in t):

$$
\partial_{x}\left(\partial_{x} \mathcal{L}[u]\right) v-\sigma k^{2} v=\lambda v_{x} .
$$

Corresponding to transverse perturbations of form

$$
v(x, y, t)=e^{\lambda t+i k y} v(x), \quad v(\cdot) \in L_{\text {per }}^{2}([0, T]) .
$$

Transverse Stability

- Given a $T=T(a, E, c)$ periodic solution $u(x ; a, E, c)$ of $g K d V$, want to determine stability in gKP.
- Strategy: linearize gKP about wave $u(x, y):=u(x ; a, E, c)$

$$
\partial_{x}(\underbrace{\partial_{x} \mathcal{L}[u]}_{\text {lin. gKdV }}) v+\sigma v_{y y}=v_{x t}, \quad v(\cdot, y, t) \in L_{\text {per }}^{2}([0, T]),
$$

and take transforms (Fourier in y, Laplace in t):

$$
\partial_{x}\left(\partial_{x} \mathcal{L}[u]\right) v-\sigma k^{2} v=\lambda v_{x} .
$$

Corresponding to transverse perturbations of form

$$
v(x, y, t)=e^{\lambda t+i k y} v(x), \quad v(\cdot) \in L_{\text {per }}^{2}([0, T])
$$

- Spectral instability if $\exists T$-periodic eigenvalue λ with $\Re(\lambda)>0$. How do we locate these eigenvalues?

Evans Ftn.

Write spec problem as

$$
Y^{\prime}=A(x ; \lambda, k) Y
$$

$\Psi(x ; \lambda, k)=$ Solution matrix.

Evans Ftn.

Write spec problem as

$$
Y^{\prime}=A(x ; \lambda, k) Y
$$

$\Psi(x ; \lambda, k)=$ Solution matrix. Floquet Theory $\Rightarrow \lambda$ is in T-periodic spec. of gen. e.val. problem iff

$$
D(\lambda ; k)=\operatorname{det}\left(\Psi(T ; \lambda, k) \Psi(0 ; \lambda, k)^{-1}-I d\right)=0
$$

Why? $\Psi(T) \Psi(0)^{-1}=$ Period Map...

Evans Ftn.

Write spec problem as

$$
Y^{\prime}=A(x ; \lambda, k) Y
$$

$\Psi(x ; \lambda, k)=$ Solution matrix. Floquet Theory $\Rightarrow \lambda$ is in T-periodic spec. of gen. e.val. problem iff

$$
D(\lambda ; k)=\operatorname{det}\left(\Psi(T ; \lambda, k) \Psi(0 ; \lambda, k)^{-1}-I d\right)=0
$$

Why? $\Psi(T) \Psi(0)^{-1}=$ Period Map... Spectral instability if $\exists \Re(\lambda)>0$ such that $D(\lambda ; k)=0$.

Evans Ftn.

Strategy: Search for real unstable e.v.'s by comparing $D(+\infty ; k)$ with $D(0, k)$ when $0<|k| \ll 1$.

$$
D(+\infty ; k) D(0, k)<0 \Rightarrow \exists \text { unstable } \lambda>0 .
$$

Evans Ftn.

Strategy: Search for real unstable e.v.'s by comparing $D(+\infty ; k)$ with $D(0, k)$ when $0<|k| \ll 1$.

$$
D(+\infty ; k) D(0, k)<0 \Rightarrow \exists \text { unstable } \lambda>0 .
$$

Note: Generally, one compares $D(+\infty, k)$ with slope at $\mu=0$. BUT, $D(0, k) \neq 0$ for small k, so only need to compute $D(0, k)$.

High Freq. Analysis

Fix k, and rescale $\tilde{x}=|\lambda|^{1 / 3} x$ to obtain

$$
\left(-\partial_{x}^{4}-|\lambda|^{-2 / 3} \partial_{x}^{2}\left(f^{\prime}(u)+c\right)-\sigma k^{2}|\lambda|^{-4 / 3}\right) v=v_{x}
$$

High Freq. Analysis

Fix k, and rescale $\tilde{x}=|\lambda|^{1 / 3} x$ to obtain

$$
\left(-\partial_{x}^{4}-|\lambda|^{-2 / 3} \partial_{x}^{2}\left(f^{\prime}(u)+c\right)-\sigma k^{2}|\lambda|^{-4 / 3}\right) v=v_{x}
$$

Write as 1st order system

$$
Y^{\prime}=\underbrace{\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0
\end{array}\right)}_{H_{0}} Y+B(\lambda) Y
$$

where $B(\lambda)=\mathcal{O}\left(|\lambda|^{-2 / 3}\right)$.

High Freq. Analysis

Fix k, and rescale $\tilde{x}=|\lambda|^{1 / 3} x$ to obtain

$$
\left(-\partial_{x}^{4}-|\lambda|^{-2 / 3} \partial_{x}^{2}\left(f^{\prime}(u)+c\right)-\sigma k^{2}|\lambda|^{-4 / 3}\right) v=v_{x}
$$

Write as 1st order system

$$
Y^{\prime}=\underbrace{\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0
\end{array}\right)}_{H_{0}} Y+B(\lambda) Y
$$

where $B(\lambda)=\mathcal{O}\left(|\lambda|^{-2 / 3}\right)$. Expect for $\lambda \gg 1$

$$
D(\lambda ; k) \approx \operatorname{det}\left(e^{H_{0}|\lambda|^{1 / 3} T}-I d\right)
$$

High Freq. Analysis

Fix k, and rescale $\tilde{x}=|\lambda|^{1 / 3} x$ to obtain

$$
\left(-\partial_{x}^{4}-|\lambda|^{-2 / 3} \partial_{x}^{2}\left(f^{\prime}(u)+c\right)-\sigma k^{2}|\lambda|^{-4 / 3}\right) v=v_{x}
$$

Write as 1st order system

$$
Y^{\prime}=\underbrace{\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0
\end{array}\right)}_{H_{0}} Y+B(\lambda) Y
$$

where $B(\lambda)=\mathcal{O}\left(|\lambda|^{-2 / 3}\right)$. Expect for $\lambda \gg 1$

$$
D(\lambda ; k) \approx \operatorname{det}\left(e^{H_{0}|\lambda|^{1 / 3} T}-I d\right)=0
$$

High Freq. Analysis

Fix k, and rescale $\tilde{x}=|\lambda|^{1 / 3} x$ to obtain

$$
\left(-\partial_{x}^{4}-|\lambda|^{-2 / 3} \partial_{x}^{2}\left(f^{\prime}(u)+c\right)-\sigma k^{2}|\lambda|^{-4 / 3}\right) v=v_{x}
$$

Write as 1st order system

$$
Y^{\prime}=\underbrace{\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 0
\end{array}\right)}_{H_{0}} Y+B(\lambda) Y
$$

where $B(\lambda)=\mathcal{O}\left(|\lambda|^{-2 / 3}\right)$. Expect for $\lambda \gg 1$

$$
D(\lambda ; k) \approx \operatorname{det}\left(e^{H_{0}|\lambda|^{1 / 3} T}-I d\right)=0
$$

Can we determine the limiting sign?

GOAL: determine effect of $B(\lambda)$ on neutral subspace of H_{0} for $\lambda \gg 1$.

GOAL: determine effect of $B(\lambda)$ on neutral subspace of H_{0} for $\lambda \gg 1$. FACT: \exists (T-periodic) linear transformation $Q=Q_{0}+\mathcal{O}(\varepsilon)$ such that

$$
Q^{-1} H_{0} Q=\underbrace{\operatorname{diag}\left(-1, \omega, \omega^{*}, 0\right)}_{Q_{0}^{-1} H_{0} Q_{0}}+\left(\begin{array}{cc}
\mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\
\mathcal{O}(\varepsilon) & \mathcal{O}\left(\varepsilon^{3 / 2}\right)
\end{array}\right),
$$

with $\omega=\frac{1}{2}(1+i \sqrt{3})$, and

$$
Q^{-1} B(\lambda) Q=\left(\begin{array}{cc}
\mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\
\mathcal{O}\left(\varepsilon^{3 / 2}\right) & \frac{1}{2} A_{x} \varepsilon+\left(\frac{1}{2} A A_{x}-\sigma k^{2}\right) \varepsilon^{2}
\end{array}\right),
$$

where $A=T$-periodic, $\varepsilon:=|\lambda|^{-2 / 3}$.

GOAL: determine effect of $B(\lambda)$ on neutral subspace of H_{0} for $\lambda \gg 1$. FACT: \exists (T-periodic) linear transformation $Q=Q_{0}+\mathcal{O}(\varepsilon)$ such that

$$
Q^{-1} H_{0} Q=\underbrace{\operatorname{diag}\left(-1, \omega, \omega^{*}, 0\right)}_{Q_{0}^{-1} H_{0} Q_{0}}+\left(\begin{array}{cc}
\mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\
\mathcal{O}(\varepsilon) & \mathcal{O}\left(\varepsilon^{3 / 2}\right)
\end{array}\right),
$$

with $\omega=\frac{1}{2}(1+i \sqrt{3})$, and

$$
Q^{-1} B(\lambda) Q=\left(\begin{array}{cc}
\mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\
\mathcal{O}\left(\varepsilon^{3 / 2}\right) & \frac{1}{2} A_{x} \varepsilon+\left(\frac{1}{2} A A_{x}-\sigma k^{2}\right) \varepsilon^{2}
\end{array}\right),
$$

where $A=T$-periodic, $\varepsilon:=|\lambda|^{-2 / 3}$.
\Rightarrow coefficient matrix

$$
Q^{-1}\left(H_{0}+B(\lambda)\right) Q
$$

is approximately block-triangular.... is this good enough?

Block-triangular tracking lemma: \exists a T-periodic change of coordinates $W=Z Y$ of form

$$
Z=\left(\begin{array}{ll}
I_{3} & 0 \\
\Phi & 1
\end{array}\right)
$$

where $\Phi=\mathcal{O}\left(\varepsilon^{3 / 2}\right)$, taking system to an exact upper block triangular form with diagonal blocks

$$
\begin{aligned}
-1+\mathcal{O}(\varepsilon), & \left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{*}
\end{array}\right)+\mathcal{O}(\varepsilon) \\
\text { and } & \frac{1}{2} A_{x} \varepsilon+\varepsilon^{2}\left(\frac{1}{2} A A_{x}-\sigma k^{2}\right)+\mathcal{O}\left(\varepsilon^{5 / 2}\right)
\end{aligned}
$$

Block-triangular form plus periodicity of coordinate changes \Rightarrow
Evans ftn. $=\prod$ Evans ftn. for blocks.

Block-triangular form plus periodicity of coordinate changes \Rightarrow

Evans ftn. $=\prod$ Evans ftn. for blocks.

Stable block:

$$
e^{-|\lambda|^{1 / 3} T}-1<0 .
$$

Block-triangular form plus periodicity of coordinate changes \Rightarrow

Evans ftn. $=\prod$ Evans ftn. for blocks.

Stable block:

$$
e^{-|\lambda|^{1 / 3} T}-1<0 .
$$

Similarly, unstable block gives >0.

Block-triangular form plus periodicity of coordinate changes \Rightarrow Evans ftn. $=\prod$ Evans ftn. for blocks.

Stable block:

$$
e^{-|\lambda|^{1 / 3} T}-1<0 .
$$

Similarly, unstable block gives >0. Neutral block gives approximately

$$
\begin{array}{r}
\exp \left(\int_{0}^{|\mu|^{1 / 3} T}\left(\frac{1}{2} A_{x} \varepsilon+\varepsilon^{2}\left(\frac{1}{2} A A_{x}-\sigma k^{2}\right)\right)(s) d s\right)-1 \\
=\exp \left(-\sigma k^{2}|\lambda|^{-1} T\right)-1 \\
\approx-\sigma k^{2}|\lambda|^{-1} .
\end{array}
$$

Block-triangular form plus periodicity of coordinate changes \Rightarrow
Evans ftn. $=\prod$ Evans ftn. for blocks.
Stable block:

$$
e^{-|\lambda|^{1 / 3} T}-1<0 .
$$

Similarly, unstable block gives >0. Neutral block gives approximately

$$
\begin{array}{r}
\exp \left(\int_{0}^{|\mu|^{1 / 3} T}\left(\frac{1}{2} A_{x} \varepsilon+\varepsilon^{2}\left(\frac{1}{2} A A_{x}-\sigma k^{2}\right)\right)(s) d s\right)-1 \\
=\exp \left(-\sigma k^{2}|\lambda|^{-1} T\right)-1 \\
\approx-\sigma k^{2}|\lambda|^{-1} .
\end{array}
$$

$\therefore \forall k \neq 0, \lim _{\lambda \rightarrow+\infty} \operatorname{sgn} D(\lambda ; k)=\operatorname{sgn}(\sigma)$.

Block-triangular form plus periodicity of coordinate changes \Rightarrow
Evans ftn. $=\prod$ Evans ftn. for blocks.
Stable block:

$$
e^{-|\lambda|^{1 / 3} T}-1<0 .
$$

Similarly, unstable block gives >0. Neutral block gives approximately

$$
\begin{array}{r}
\exp \left(\int_{0}^{|\mu|^{1 / 3} T}\left(\frac{1}{2} A_{x} \varepsilon+\varepsilon^{2}\left(\frac{1}{2} A A_{x}-\sigma k^{2}\right)\right)(s) d s\right)-1 \\
=\exp \left(-\sigma k^{2}|\lambda|^{-1} T\right)-1 \\
\approx-\sigma k^{2}|\lambda|^{-1} .
\end{array}
$$

$\therefore \forall k \neq 0, \lim _{\lambda \rightarrow+\infty} \operatorname{sgn} D(\lambda ; k)=\operatorname{sgn}(\sigma)$.
Remark: Same proof works in Solitary wave case.... never been done this way(?).

Low-Freq. Analysis

Goal: Compare sign of σ to $\operatorname{sgn} D(0, k)$ for $0<|k| \ll 1$, where

$$
D(0, k)=\operatorname{det}(\underbrace{\Psi(T ; 0, k)-\Psi(0 ; 0, k)}_{\Psi(T ; 0,0)-\Psi(0 ; 0, k)-\sigma k^{2} \Psi_{k^{2}}(T ; 0,0)+\mathcal{O}\left(k^{4}\right)}) / \operatorname{det}(\Psi(0 ; 0, k))
$$

$\Psi=$ Soln. Matrix in arbitrary basis.

Low-Freq. Analysis

Goal: Compare sign of σ to $\operatorname{sgn} D(0, k)$ for $0<|k| \ll 1$, where

$$
D(0, k)=\operatorname{det}(\underbrace{\Psi(T ; 0, k)-\Psi(0 ; 0, k)}_{\Psi(T ; 0,0)-\Psi(0 ; 0, k)-\sigma k^{2} \Psi_{k^{2}}(T ; 0,0)+\mathcal{O}\left(k^{4}\right)}) / \operatorname{det}(\Psi(0 ; 0, k))
$$

$\Psi=$ Soln. Matrix in arbitrary basis.
Choose useful basis at $(\lambda, k)=(0,0)$: recall periodic traveling waves parameterized by (a, E, c).

Low-Freq. Analysis

Goal: Compare sign of σ to $\operatorname{sgn} D(0, k)$ for $0<|k| \ll 1$, where

$$
D(0, k)=\operatorname{det}(\underbrace{\Psi(T ; 0, k)-\Psi(0 ; 0, k)}_{\Psi(T ; 0,0)-\Psi(0 ; 0, k)-\sigma k^{2} \Psi_{k^{2}}(T ; 0,0)+\mathcal{O}\left(k^{4}\right)}) / \operatorname{det}(\Psi(0 ; 0, k))
$$

$\Psi=$ Soln. Matrix in arbitrary basis.
Choose useful basis at $(\lambda, k)=(0,0)$: recall periodic traveling waves parameterized by (a, E, c).
Noether's thm $\Rightarrow\left\{u_{x}, u_{a}, u_{E}\right\} \quad$ (formally) solve $\partial_{x}^{2} \mathcal{L}[u] v=0$.

Low-Freq. Analysis

Goal: Compare sign of σ to $\operatorname{sgn} D(0, k)$ for $0<|k| \ll 1$, where

$$
D(0, k)=\operatorname{det}(\underbrace{\Psi(T ; 0, k)-\Psi(0 ; 0, k)}_{\Psi(T ; 0,0)-\Psi(0 ; 0, k)-\sigma k^{2} \Psi_{k^{2}}(T ; 0,0)+\mathcal{O}\left(k^{4}\right)}) / \operatorname{det}(\Psi(0 ; 0, k))
$$

$\Psi=$ Soln. Matrix in arbitrary basis.
Choose useful basis at $(\lambda, k)=(0,0)$: recall periodic traveling waves parameterized by (a, E, c).
Noether's thm $\Rightarrow\left\{u_{x}, u_{a}, u_{E}\right\} \quad$ (formally) solve $\partial_{\chi}^{2} \mathcal{L}[u] v=0$.
Fourth soln. found by variation of parameters:

$$
\phi(x):=\left(\int_{0}^{x} s u_{E}(s) d s\right) u_{x}(x)-\left(\int_{0}^{x} s u_{s}(s) d s\right) u_{E}(x) .
$$

- Together $\left\{u_{x}, u_{a}, u_{E}, \phi\right\}$ form basis for (formal) null-space of linearization at $(\lambda, k)=(0,0)$.
- Together $\left\{u_{x}, u_{a}, u_{E}, \phi\right\}$ form basis for (formal) null-space of linearization at $(\lambda, k)=(0,0)$.
- Q: How does this basis bifurcate from $k=0$ state?
- Together $\left\{u_{x}, u_{a}, u_{E}, \phi\right\}$ form basis for (formal) null-space of linearization at $(\lambda, k)=(0,0)$.
- Q: How does this basis bifurcate from $k=0$ state?
- Use Variation of parameters to compute $\Psi_{k^{2}}(T ; 0,0)$: If $\left\{Y_{j}\right\}_{j=1}^{4}=$ Soln. Vecs for basis, then
$\left.\frac{\partial}{\partial k^{2}} Y_{j}(T ; 0, k)\right|_{k=0}=\Psi(T ; 0,0) \int_{0}^{T} W(x ; 0,0)^{-1}\left(Y_{j}(x) \cdot e_{j}\right) e_{4} d x$ $e_{j}=$ standard basis vecs. in \mathbb{R}^{4}.
- Together $\left\{u_{x}, u_{a}, u_{E}, \phi\right\}$ form basis for (formal) null-space of linearization at $(\lambda, k)=(0,0)$.
- Q: How does this basis bifurcate from $k=0$ state?
- Use Variation of parameters to compute $\Psi_{k^{2}}(T ; 0,0)$: If $\left\{Y_{j}\right\}_{j=1}^{4}=$ Soln. Vecs for basis, then
$\left.\frac{\partial}{\partial k^{2}} Y_{j}(T ; 0, k)\right|_{k=0}=\Psi(T ; 0,0) \int_{0}^{T} W(x ; 0,0)^{-1}\left(Y_{j}(x) \cdot e_{j}\right) e_{4} d x$
$e_{j}=$ standard basis vecs. in \mathbb{R}^{4}.
- Yields
$\delta \Psi(0, k)=\delta \Psi(0,0)-\left(\left.\sum_{j=1}^{4} \partial_{k^{2}} Y_{j}(T ; 0, k)\right|_{k=0} \otimes e_{j}\right) \sigma k^{2}+\mathcal{O}\left(k^{4}\right)$.
where $\delta \Psi(0, \cdot)=\Psi(T ; 0, \cdot)-\Psi(0 ; 0, k)$.

Ugly Computation: for $0<|k| \ll 1$

$$
\begin{aligned}
& D(0, k)=\operatorname{det}\left(\delta \Psi(0,0)-\left(\left.\sum_{j=1}^{3} \partial_{k^{2}} Y_{j}(T ; 0, k)\right|_{k=0} \otimes e_{j}\right) \sigma k^{2}\right) \\
&+\mathcal{O}\left(k^{6}\right) \\
&=-\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \underbrace{\left(M^{2}-\|u\|_{L^{2}([0, T])}^{2} T\right)}_{>0 \text { by Cauchy-Schwarz }}\left(\sigma k^{2}\right)^{2}+\mathcal{O}\left(k^{6}\right),
\end{aligned}
$$

where $T=$ period, $M=\int_{0}^{T} u(s) d s=$ Conserved Quantity (Mass).

Ugly Computation: for $0<|k| \ll 1$

$$
\begin{aligned}
& D(0, k)=\operatorname{det}\left(\delta \Psi(0,0)-\left(\left.\sum_{j=1}^{3} \partial_{k^{2}} Y_{j}(T ; 0, k)\right|_{k=0} \otimes e_{j}\right) \sigma k^{2}\right) \\
&+\mathcal{O}\left(k^{6}\right) \\
&=-\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \underbrace{\left(M^{2}-\|u\|_{L^{2}([0, T])}^{2} T\right)}_{>0 \text { by Cauchy-Schwarz }}\left(\sigma k^{2}\right)^{2}+\mathcal{O}\left(k^{6}\right),
\end{aligned}
$$

where $T=$ period, $M=\int_{0}^{T} u(s) d s=$ Conserved Quantity (Mass).

$$
\therefore \quad \operatorname{sgn} D(0, k)=-\operatorname{sgn} \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \quad \forall 0<|k| \ll 1 .
$$

Instability

Theorem (M.J. \& K. Zumbrun-2009)

Periodic traveling wave soln. of $g K d V$ is transversely (spectrally) unstable in gKP if

$$
\sigma \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)>0
$$

Instability

Theorem (M.J. \& K. Zumbrun-2009)

Periodic traveling wave soln. of $g K d V$ is transversely (spectrally) unstable in gKP if

$$
\sigma \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)>0
$$

Remark: From numerics, above det. is generically non-zero....

Instability

Theorem (M.J. \& K. Zumbrun-2009)

Periodic traveling wave soln. of $g K d V$ is transversely (spectrally) unstable in gKP if

$$
\sigma \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)>0
$$

Remark: From numerics, above det. is generically non-zero....

Corollary

Periodic traveling wave of $g K d V$ such that above det. is non-zero can never be spectrally stable to transverse perturbations in gKP for both $\sigma= \pm 1$.

Calculations (M.J., J. C. Bronski, \& T. Kapitula-2010)

- KdV:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\frac{-T^{2} V^{\prime}(M / T)}{12 \operatorname{disc}(E-V(\cdot ; a, c))}>0
$$

by Jensen's inequality and fact that $E-V=$ cubic w/ 3 real roots (required for \exists periodic orbits).

Calculations (M.J., J. C. Bronski, \& T. Kapitula-2010)

- KdV:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\frac{-T^{2} V^{\prime}(M / T)}{12 \operatorname{disc}(E-V(\cdot ; a, c))}>0
$$

by Jensen's inequality and fact that $E-V=$ cubic w/ 3 real roots (required for \exists periodic orbits).
\therefore Cnoidal waves of KdV transversely unstable in KP-I $(\sigma>0)$.

Calculations (M.J., J. C. Bronski, \& T. Kapitula-2010)

- KdV:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\frac{-T^{2} V^{\prime}(M / T)}{12 \operatorname{disc}(E-V(\cdot ; a, c))}>0
$$

by Jensen's inequality and fact that $E-V=$ cubic w/ 3 real roots (required for \exists periodic orbits).
\therefore Cnoidal waves of KdV transversely unstable in KP-I $(\sigma>0)$.
Similar to solitary wave case, and agrees with results of Haragus-2010.

Calculations (M.J., J. C. Bronski, \& T. Kapitula-2010)

- KdV:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\frac{-T^{2} V^{\prime}(M / T)}{12 \operatorname{disc}(E-V(\cdot ; a, c))}>0
$$

by Jensen's inequality and fact that $E-V=$ cubic w/ 3 real roots (required for \exists periodic orbits).
\therefore Cnoidal waves of KdV transversely unstable in KP-I $(\sigma>0)$.
Similar to solitary wave case, and agrees with results of Haragus-2010.

- Focusing mKdV $\left(f(u)=u^{3}\right) \mathrm{w} /$ symmetric potential:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\left\{\begin{array}{l}
>0, \forall \text { Dnoidal waves } \\
<0, \forall \text { Cnoidal waves }
\end{array}\right.
$$

Calculations (M.J., J. C. Bronski, \& T. Kapitula-2010)

- KdV:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\frac{-T^{2} V^{\prime}(M / T)}{12 \operatorname{disc}(E-V(\cdot ; a, c))}>0
$$

by Jensen's inequality and fact that $E-V=$ cubic w/ 3 real roots (required for \exists periodic orbits).
\therefore Cnoidal waves of KdV transversely unstable in KP-I $(\sigma>0)$.
Similar to solitary wave case, and agrees with results of Haragus-2010.

- Focusing mKdV $\left(f(u)=u^{3}\right) \mathrm{w} /$ symmetric potential:

$$
\operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right)=\left\{\begin{array}{l}
>0, \forall \text { Dnoidal waves } \\
<0, \forall \text { Cnoidal waves }
\end{array}\right.
$$

- Other Cases: Use numerics....

Final Remarks: Long-Wavelength Instabilities

(M.J.-2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x} .
$$

Result: for $|(\mu, k)| \ll 1$,

$$
\begin{aligned}
D(\mu, k)=- & \frac{\mu^{3}}{2} \operatorname{det}\left(\frac{\partial(T, M, P)}{\partial(a, E, c)}\right) \\
& +\mu k^{2} \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \int_{0}^{T} u_{x}^{2} d x \\
& +\mathcal{O}\left(|\mu|^{4}+k^{4}\right) .
\end{aligned}
$$

Final Remarks: Long-Wavelength Instabilities

(M.J.-2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x} .
$$

Result: for $|(\mu, k)| \ll 1$,

$$
\begin{aligned}
D(\mu, k)=- & \frac{\mu^{3}}{2} \\
& \operatorname{det}\left(\frac{\partial(T, M, P)}{\partial(a, E, c)}\right) \\
& +\mu k^{2} \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \int_{0}^{T} u_{x}^{2} d x \\
& +\mathcal{O}\left(|\mu|^{4}+k^{4}\right) .
\end{aligned}
$$

Yields spectral instability criterion for small k.

Final Remarks: Long-Wavelength Instabilities

(M.J.-2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x} .
$$

Result: for $|(\mu, k)| \ll 1$,

$$
\begin{aligned}
D(\mu, k)=- & \frac{\mu^{3}}{2} \\
& \operatorname{det}\left(\frac{\partial(T, M, P)}{\partial(a, E, c)}\right) \\
& +\mu k^{2} \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \int_{0}^{T} u_{x}^{2} d x \\
& +\mathcal{O}\left(|\mu|^{4}+k^{4}\right) .
\end{aligned}
$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc...

Final Remarks: Long-Wavelength Instabilities

(M.J.-2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x} .
$$

Result: for $|(\mu, k)| \ll 1$,

$$
\begin{aligned}
D(\mu, k)=- & \frac{\mu^{3}}{2} \\
& \operatorname{det}\left(\frac{\partial(T, M, P)}{\partial(a, E, c)}\right) \\
& +\mu k^{2} \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \int_{0}^{T} u_{x}^{2} d x \\
& +\mathcal{O}\left(|\mu|^{4}+k^{4}\right) .
\end{aligned}
$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc...
Q: Why didn't we do this for KP?

Final Remarks: Long-Wavelength Instabilities

(M.J.-2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$
u_{t}=\left(u_{x x}+u_{y y}\right)_{x}+f(u)_{x} .
$$

Result: for $|(\mu, k)| \ll 1$,

$$
\begin{aligned}
D(\mu, k)=- & \frac{\mu^{3}}{2} \\
& \operatorname{det}\left(\frac{\partial(T, M, P)}{\partial(a, E, c)}\right) \\
& +\mu k^{2} \operatorname{det}\left(\frac{\partial(T, M)}{\partial(a, E)}\right) \int_{0}^{T} u_{x}^{2} d x \\
& +\mathcal{O}\left(|\mu|^{4}+k^{4}\right) .
\end{aligned}
$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc...
Q: Why didn't we do this for KP?
A: I'm not smart enough to compute $\left.\partial_{\mu}^{4} D(\mu, k)\right|_{(\mu, k)=(0,0)}$.

Final Remarks

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at $k=0$) can be found.

Final Remarks

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at $k=0$) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).

Final Remarks

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at $k=0$) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).
- "Big" Open Problem: Can anyone say anything about STABILITY???

Final Remarks

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at $k=0$) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).
- "Big" Open Problem: Can anyone say anything about STABILITY???

Thank You!

