The Transverse Instability of Periodic Traveling Waves in the Generalized Kadomtsev-Petviashvili (KP) Equation

Mathew A. Johnson Indiana University (NSF/Zorn Postdoctoral Fellow)

August 18, 2010

Joint work with Kevin Zumbrun (IU)

• The gKP equations are given by

$$(u_t - u_{xxx} - f(u)_x)_x + \sigma u_{yy} = 0, \quad \sigma = \pm 1.$$

Weakly two-dimensional version of the gKdV equation

$$u_t = u_{xxx} + f(u)_x.$$

Special Case: $f(u) = \frac{1}{2}u^2$ (KdV-nonlinearity)

- KP-I if $\sigma = +1$: model for thin films with high surface tension.
- KP-II if $\sigma = -1$: model for water waves with small surface tension.

 Other multi-d generalizations exist: gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x$$

but KP has extra *degeneracy* which presents interesting mathematical difficulty.

• **Take Away**: Solutions of gKdV = unidirectional (*y*-independent) solution of *gKP*.

• The gKP equations are given by

$$(u_t - u_{xxx} - f(u)_x)_x + \sigma u_{yy} = 0, \quad \sigma = \pm 1.$$

Weakly two-dimensional version of the gKdV equation

$$u_t = u_{xxx} + f(u)_x.$$

Special Case: $f(u) = \frac{1}{2}u^2$ (KdV-nonlinearity)

- KP-I if $\sigma = +1$: model for thin films with high surface tension.
- KP-II if $\sigma = -1$: model for water waves with small surface tension.
- Other multi-d generalizations exist: gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x$$

but KP has extra *degeneracy* which presents interesting mathematical difficulty.

• **Take Away**: Solutions of gKdV = unidirectional (*y*-independent) solution of *gKP*.

• The gKP equations are given by

$$(u_t - u_{xxx} - f(u)_x)_x + \sigma u_{yy} = 0, \quad \sigma = \pm 1.$$

Weakly two-dimensional version of the gKdV equation

$$u_t = u_{xxx} + f(u)_x.$$

Special Case: $f(u) = \frac{1}{2}u^2$ (KdV-nonlinearity)

- KP-I if $\sigma = +1$: model for thin films with high surface tension.
- KP-II if $\sigma = -1$: model for water waves with small surface tension.
- Other multi-d generalizations exist: gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x$$

but KP has extra *degeneracy* which presents interesting mathematical difficulty.

• **Take Away**: Solutions of gKdV = unidirectional (*y*-independent) solution of gKP.

• **Main Problem:** When are stable solutions of gKdV stable in the gKP equation?

- Have answers for solitary waves, i.e. when $\lim_{x \to \pm \infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 - Others????

- **Main Problem:** When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 - Others????

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 - Others????

イロト イヨト イヨト イヨ

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 - Others????

(日) (同) (三) (三)

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 - Others????

(日) (同) (三) (三)

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 Others????

- 4 @ > - 4 @ > - 4 @ >

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)

- Main Problem: When are stable solutions of gKdV stable in the gKP equation?
- Have answers for solitary waves, i.e. when $\lim_{x\to\pm\infty} u(x) = 0$:
 - $\sigma > 0 \Rightarrow$ solitary waves stable in gKdV, but unstable in gKP. Instability is to low-frequency perturbations.
 - $\sigma < 0 \Rightarrow$ depends on nonlinearity. KdV: transversely stable, but \exists nonlinearities with unstable solitary waves to low-frequency perturbations.
 - Results based on multi-scale analysis...
- Few answers for spatially periodic waves:
 - (Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0 unstable. (Finished after our work?)
 - Others????

- 4 個 ト - 4 三 ト - 4 三 ト

Seek traveling wave solutions of gKdV

 $u_t = u_{xxx} + f(u)_x.$

Stationary solution in moving coordinate frame x - ct:

$$u_{xxx} + f(u)_x - cu_x = 0$$

$$\frac{u_x^2}{2} = E - \underbrace{\left(\int_{-\infty}^{\infty} f(u(z))dz - \frac{c}{2}u^2 - au\right)}_{V(u;a,c)}$$

- Solitary waves: bdry conditions $\Rightarrow a = E = 0$.
- \exists (mod translations) three parameter family of periodic traveling wave solutions of gKdV, parameterized by (a, E, c).

Seek traveling wave solutions of $\mathsf{g}\mathsf{K}\mathsf{d}\mathsf{V}$

$$u_t = u_{xxx} + f(u)_x.$$

Stationary solution in moving coordinate frame x - ct:

$$u_{xxx} + f(u)_x - cu_x = 0$$

Integrable: \exists constants $a, E \in \mathbb{R}$ such that

$$\frac{u_x^2}{2} = E - \underbrace{\left(\int^x f(u(z))dz - \frac{c}{2}u^2 - au\right)}_{V(u;a,c)}$$

• Solitary waves: bdry conditions $\Rightarrow a = E = 0$.

 ∃ (mod translations) three parameter family of periodic traveling wave solutions of gKdV, parameterized by (a, E, c).

Seek traveling wave solutions of $\mathsf{g}\mathsf{K}\mathsf{d}\mathsf{V}$

$$u_t = u_{xxx} + f(u)_x.$$

Stationary solution in moving coordinate frame x - ct:

$$u_{xxx} + f(u)_x - cu_x = 0$$

$$\frac{u_x^2}{2} = E - \underbrace{\left(\int^x f(u(z))dz - \frac{c}{2}u^2 - au\right)}_{V(u;a,c)}$$

- Solitary waves: bdry conditions $\Rightarrow a = E = 0$.
- ∃ (mod translations) three parameter family of periodic traveling wave solutions of gKdV, parameterized by (a, E, c).

Seek traveling wave solutions of $\mathsf{g}\mathsf{K}\mathsf{d}\mathsf{V}$

$$u_t = u_{xxx} + f(u)_x.$$

Stationary solution in moving coordinate frame x - ct:

$$u_{xxx} + f(u)_x - cu_x = 0$$

$$\frac{u_x^2}{2} = E - \underbrace{\left(\int^x f(u(z))dz - \frac{c}{2}u^2 - au\right)}_{V(u;a,c)}$$

- Solitary waves: bdry conditions $\Rightarrow a = E = 0$.
- \exists (mod translations) three parameter family of periodic traveling wave solutions of gKdV, parameterized by (a, E, c).

Seek traveling wave solutions of gKdV

$$u_t = u_{xxx} + f(u)_x.$$

Stationary solution in moving coordinate frame x - ct:

$$u_{xxx} + f(u)_x - cu_x = 0$$

$$\frac{u_x^2}{2} = E - \underbrace{\left(\int^x f(u(z))dz - \frac{c}{2}u^2 - au\right)}_{V(u;a,c)}$$

- Solitary waves: bdry conditions $\Rightarrow a = E = 0$.
- \exists (mod translations) three parameter family of periodic traveling wave solutions of gKdV, parameterized by (a, E, c).

Transverse Stability

• Given a T = T(a, E, c) periodic solution u(x; a, E, c) of gKdV, want to determine stability in gKP.

• Strategy: linearize gKP about wave u(x, y) := u(x; a, E, c)

$$\partial_{x}\left(\underbrace{\partial_{x}\mathcal{L}[u]}_{\text{lin. gKdV}}\right)v + \sigma v_{yy} = v_{xt}, \quad v(\cdot, y, t) \in L^{2}_{\text{per}}([0, T]),$$

and take transforms (Fourier in y, Laplace in t): $\partial_x (\partial_x \mathcal{L}[u]) v - \sigma k^2 v = \lambda v_x.$

Corresponding to transverse perturbations of form

$$v(x,y,t) = e^{\lambda t + iky}v(x), \quad v(\cdot) \in L^2_{\mathrm{per}}([0,T]).$$

• Spectral instability if \exists *T*-periodic *eigenvalue* λ with $\Re(\lambda) > 0$. How do we locate these eigenvalues?

Transverse Stability

- Given a T = T(a, E, c) periodic solution u(x; a, E, c) of gKdV, want to determine stability in gKP.
- Strategy: linearize gKP about wave u(x, y) := u(x; a, E, c)

$$\partial_x \left(\underbrace{\partial_x \mathcal{L}[u]}_{\text{lin. gKdV}} \right) \mathbf{v} + \sigma \mathbf{v}_{yy} = \mathbf{v}_{xt}, \quad \mathbf{v}(\cdot, y, t) \in L^2_{\text{per}}([0, T]),$$

and take transforms (Fourier in y, Laplace in t):

$$\partial_{x} \left(\partial_{x} \mathcal{L}[u] \right) v - \sigma k^{2} v = \lambda v_{x}.$$

Corresponding to transverse perturbations of form

$$\mathbf{v}(x,y,t) = e^{\lambda t + iky} \mathbf{v}(x), \quad \mathbf{v}(\cdot) \in L^2_{\mathrm{per}}([0,T]).$$

• Spectral instability if $\exists T$ -periodic *eigenvalue* λ with $\Re(\lambda) > 0$. How do we locate these eigenvalues?

Transverse Stability

- Given a T = T(a, E, c) periodic solution u(x; a, E, c) of gKdV, want to determine stability in gKP.
- Strategy: linearize gKP about wave u(x, y) := u(x; a, E, c)

$$\partial_x \left(\underbrace{\partial_x \mathcal{L}[u]}_{\text{lin. gKdV}} \right) \mathbf{v} + \sigma \mathbf{v}_{yy} = \mathbf{v}_{xt}, \quad \mathbf{v}(\cdot, y, t) \in L^2_{\text{per}}([0, T]),$$

and take transforms (Fourier in y, Laplace in t):

$$\partial_{x} \left(\partial_{x} \mathcal{L}[u] \right) \mathbf{v} - \sigma \mathbf{k}^{2} \mathbf{v} = \lambda \mathbf{v}_{x}.$$

Corresponding to transverse perturbations of form

$$\mathbf{v}(x,y,t) = e^{\lambda t + iky} \mathbf{v}(x), \quad \mathbf{v}(\cdot) \in L^2_{\mathrm{per}}([0,T]).$$

 Spectral instability if ∃ *T*-periodic *eigenvalue* λ with ℜ(λ) > 0. How do we locate these eigenvalues? Write spec problem as

$$Y' = A(x; \lambda, k) Y$$

 $\Psi(x; \lambda, k) =$ Solution matrix. Floquet Theory $\Rightarrow \lambda$ is in T-periodic spec. of gen. e.val. problem iff

 $D(\lambda; k) = \det \left(\Psi(T; \lambda, k) \Psi(0; \lambda, k)^{-1} - Id \right) = 0$

Why? $\Psi(\mathcal{T})\Psi(0)^{-1} =$ Period Map... Spectral instability if $\exists \Re(\lambda) > 0$ such that $D(\lambda; k) = 0$. Write spec problem as

$$Y' = A(x; \lambda, k) Y$$

 $\Psi(x; \lambda, k) =$ Solution matrix. Floquet Theory $\Rightarrow \lambda$ is in T-periodic spec. of gen. e.val. problem iff

$$D(\lambda; k) = \det \left(\Psi(T; \lambda, k) \Psi(0; \lambda, k)^{-1} - Id \right) = 0$$

Why? $\Psi(T)\Psi(0)^{-1} =$ Period Map... Spectral instability if $\exists \Re(\lambda) > 0$ such that $D(\lambda; k) = 0$. Write spec problem as

$$Y' = A(x; \lambda, k) Y$$

 $\Psi(x; \lambda, k) =$ Solution matrix. Floquet Theory $\Rightarrow \lambda$ is in T-periodic spec. of gen. e.val. problem iff

$$D(\lambda; k) = \det \left(\Psi(T; \lambda, k) \Psi(0; \lambda, k)^{-1} - Id \right) = 0$$

Why? $\Psi(T)\Psi(0)^{-1}$ =Period Map... Spectral instability if $\exists \Re(\lambda) > 0$ such that $D(\lambda; k) = 0$. **Strategy**: Search for real unstable e.v.'s by comparing $D(+\infty; k)$ with D(0, k) when $0 < |k| \ll 1$.

$D(+\infty; k)D(0, k) < 0 \Rightarrow \exists \text{ unstable } \lambda > 0.$

Note: Generally, one compares $D(+\infty, k)$ with slope at $\mu = 0$. BUT, $D(0, k) \neq 0$ for small k, so only need to compute D(0, k). **Strategy**: Search for real unstable e.v.'s by comparing $D(+\infty; k)$ with D(0, k) when $0 < |k| \ll 1$.

 $D(+\infty; k)D(0, k) < 0 \Rightarrow \exists \text{ unstable } \lambda > 0.$

Note: Generally, one compares $D(+\infty, k)$ with slope at $\mu = 0$. BUT, $D(0, k) \neq 0$ for small k, so only need to compute D(0, k).

Fix k, and rescale $\tilde{x} = |\lambda|^{1/3}x$ to obtain

$$\left(-\partial_x^4 - |\lambda|^{-2/3}\partial_x^2(f'(u) + c) - \sigma k^2 |\lambda|^{-4/3}\right) v = v_x$$

Write as 1st order system

where $B(\lambda) = \mathcal{O}(|\lambda|^{-2/3})$. Expect for $\lambda \gg 1$

 $D(\lambda; k) \approx \det \left(e^{H_0 |\lambda|^{1/3}T} - Id \right) = 0.$

Can we determine the limiting sign?

<ロト </p>

Fix k, and rescale $\tilde{x} = |\lambda|^{1/3}x$ to obtain

$$\left(-\partial_x^4 - |\lambda|^{-2/3}\partial_x^2(f'(u) + c) - \sigma k^2 |\lambda|^{-4/3}\right) v = v_x$$

Write as 1st order system

$$Y' = \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}}_{H_0} Y + B(\lambda)Y$$

where $B(\lambda) = \mathcal{O}(|\lambda|^{-2/3})$. Expect for $\lambda \gg 1$

 $D(\lambda; k) \approx \det \left(e^{H_0|\lambda|^{1/3}T} - Id \right) = 0.$

Can we determine the limiting sign?

イロト イヨト イヨト イヨト

Fix k, and rescale $\tilde{x} = |\lambda|^{1/3}x$ to obtain

$$\left(-\partial_x^4 - |\lambda|^{-2/3}\partial_x^2(f'(u) + c) - \sigma k^2 |\lambda|^{-4/3}\right) v = v_x$$

Write as 1st order system

$$Y' = \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}}_{H_0} Y + B(\lambda)Y$$

where $B(\lambda) = \mathcal{O}(|\lambda|^{-2/3})$. Expect for $\lambda \gg 1$ $D(\lambda; k) \approx \det \left(e^{H_0|\lambda|^{1/3}T} - Id\right) = 0.$

Can we determine the limiting sign?

イロト イヨト イヨト イヨト

Fix k, and rescale $\tilde{x} = |\lambda|^{1/3}x$ to obtain

$$\left(-\partial_x^4 - |\lambda|^{-2/3}\partial_x^2(f'(u) + c) - \sigma k^2 |\lambda|^{-4/3}\right) v = v_x$$

Write as 1st order system

$$Y' = \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}}_{H_0} Y + B(\lambda)Y$$

where $B(\lambda) = \mathcal{O}(|\lambda|^{-2/3})$. Expect for $\lambda \gg 1$ $D(\lambda; k) \approx \det \left(e^{H_0|\lambda|^{1/3}T} - Id\right) = 0.$

Can we determine the limiting sign?

イロト イヨト イヨト イヨト

Fix k, and rescale $\tilde{x} = |\lambda|^{1/3}x$ to obtain

$$\left(-\partial_x^4 - |\lambda|^{-2/3}\partial_x^2(f'(u) + c) - \sigma k^2 |\lambda|^{-4/3}\right) v = v_x$$

Write as 1st order system

$$Y' = \underbrace{\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}}_{H_0} Y + B(\lambda)Y$$

where $B(\lambda) = \mathcal{O}(|\lambda|^{-2/3})$. Expect for $\lambda \gg 1$ $D(\lambda; k) \approx \det \left(e^{H_0|\lambda|^{1/3}T} - Id\right) = 0.$

Can we determine the limiting sign?

GOAL: determine effect of $B(\lambda)$ on neutral subspace of H_0 for $\lambda \gg 1$. FACT = (*T*-periodic) linear transformation $Q = Q_0 + O(c)$ such that

$$Q^{-1}H_0Q = \underbrace{\operatorname{diag}(-1,\omega,\omega^*,0)}_{Q_0^{-1}H_0Q_0} + \begin{pmatrix} \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\ \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon^{3/2}) \end{pmatrix},$$

with $\omega = \frac{1}{2}(1+i\sqrt{3})$, and

$$Q^{-1}B(\lambda)Q = \begin{pmatrix} \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\ \mathcal{O}(\varepsilon^{3/2}) & \frac{1}{2}A_x\varepsilon + \left(\frac{1}{2}AA_x - \sigma k^2\right)\varepsilon^2 \end{pmatrix},$$

where A = T-periodic, $\varepsilon := |\lambda|^{-2/3}$. \Rightarrow coefficient matrix

$$Q^{-1}(H_0+B(\lambda))Q$$

is approximately block-triangular.... is this good enough?

GOAL: determine effect of $B(\lambda)$ on neutral subspace of H_0 for $\lambda \gg 1$. FACT: \exists (*T*-periodic) linear transformation $Q = Q_0 + \mathcal{O}(\varepsilon)$ such that

$$Q^{-1}H_0Q = \underbrace{\operatorname{diag}(-1,\omega,\omega^*,0)}_{Q_0^{-1}H_0Q_0} + \begin{pmatrix} \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\ \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon^{3/2}) \end{pmatrix},$$

with $\omega = \frac{1}{2}(1+i\sqrt{3})$, and

$$Q^{-1}B(\lambda)Q = \left(egin{array}{cc} \mathcal{O}(arepsilon) & \mathcal{O}(arepsilon) \ \mathcal{O}(arepsilon^{3/2}) & rac{1}{2}\mathcal{A}_xarepsilon + \left(rac{1}{2}\mathcal{A}\mathcal{A}_x - \sigma k^2
ight)arepsilon^2 \end{array}
ight),$$

where A = T-periodic, $\varepsilon := |\lambda|^{-2/3}$.

 \Rightarrow coefficient matrix

$$Q^{-1}(H_0+B(\lambda))Q$$

is approximately block-triangular.... is this good enough?

GOAL: determine effect of $B(\lambda)$ on neutral subspace of H_0 for $\lambda \gg 1$. FACT: \exists (*T*-periodic) linear transformation $Q = Q_0 + \mathcal{O}(\varepsilon)$ such that

$$Q^{-1}H_0Q = \underbrace{\operatorname{diag}(-1,\omega,\omega^*,0)}_{Q_0^{-1}H_0Q_0} + \begin{pmatrix} \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\ \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon^{3/2}) \end{pmatrix},$$

with $\omega = \frac{1}{2}(1 + i\sqrt{3})$, and

$$Q^{-1}B(\lambda)Q = \begin{pmatrix} \mathcal{O}(\varepsilon) & \mathcal{O}(\varepsilon) \\ \mathcal{O}(\varepsilon^{3/2}) & \frac{1}{2}A_x\varepsilon + \left(\frac{1}{2}AA_x - \sigma k^2\right)\varepsilon^2 \end{pmatrix},$$

where A = T-periodic, $\varepsilon := |\lambda|^{-2/3}$. \Rightarrow coefficient matrix

$$Q^{-1}(H_0+B(\lambda))Q$$

is approximately block-triangular.... is this good enough?

Block-triangular tracking lemma: \exists a *T*-periodic change of coordinates W = ZY of form

$$Z = \left(\begin{array}{cc} I_3 & 0\\ \Phi & 1\end{array}\right)$$

where $\Phi = O(\varepsilon^{3/2})$, taking system to an **exact** upper block triangular form with diagonal blocks

$$egin{aligned} -1 + \mathcal{O}(arepsilon), & \left(egin{aligned} \omega & 0 \ 0 & \omega^* \end{array}
ight) + \mathcal{O}(arepsilon) \ ext{and} & rac{1}{2} \mathcal{A}_{\mathsf{x}}arepsilon + arepsilon^2 \left(rac{1}{2} \mathcal{A} \mathcal{A}_{\mathsf{x}} - \sigma k^2
ight) + \mathcal{O}(arepsilon^{5/2}). \end{aligned}$$

Block-triangular form *plus* periodicity of coordinate changes \Rightarrow

Evans ftn. =
$$\prod$$
 Evans ftn. for blocks.

Stable block:

 $e^{-|\lambda|^{1/3}T} - 1 < 0.$

Similarly, unstable block gives > 0. Neutral block gives approximately

$$\exp\left(\int_{0}^{|\mu|^{1/3}T} \left(\frac{1}{2}A_{x}\varepsilon + \varepsilon^{2}\left(\frac{1}{2}AA_{x} - \sigma k^{2}\right)\right)(s)ds\right) - 1$$
$$= \exp\left(-\sigma k^{2}|\lambda|^{-1}T\right) - 1$$
$$\approx -\sigma k^{2}|\lambda|^{-1}.$$

 $\therefore \forall k \neq 0$, $\lim_{\lambda \to +\infty} \operatorname{sgn} D(\lambda; k) = \operatorname{sgn}(\sigma)$. Remark: Same proof works in Solitary wave case.... never been done this way(?). Block-triangular form *plus* periodicity of coordinate changes \Rightarrow

Evans ftn. =
$$\prod$$
 Evans ftn. for blocks.

Stable block:

$$e^{-|\lambda|^{1/3}T}-1<0.$$

Similarly, unstable block gives > 0. Neutral block gives approximately

$$\exp\left(\int_{0}^{|\mu|^{1/3}T} \left(\frac{1}{2}A_{x}\varepsilon + \varepsilon^{2}\left(\frac{1}{2}AA_{x} - \sigma k^{2}\right)\right)(s)ds\right) - 1$$
$$= \exp\left(-\sigma k^{2}|\lambda|^{-1}T\right) - 1$$
$$\approx -\sigma k^{2}|\lambda|^{-1}.$$

 $\therefore \forall k \neq 0$, $\lim_{\lambda \to +\infty} \operatorname{sgn} D(\lambda; k) = \operatorname{sgn}(\sigma)$. Remark: Same proof works in Solitary wave case.... never been done this way(?).

Evans ftn. =
$$\prod$$
 Evans ftn. for blocks.

Stable block:

$$e^{-|\lambda|^{1/3}T}-1<0.$$

Similarly, unstable block gives > 0. Neutral block gives approximately

$$\exp\left(\int_{0}^{|\mu|^{1/3}T} \left(\frac{1}{2}A_{x}\varepsilon + \varepsilon^{2}\left(\frac{1}{2}AA_{x} - \sigma k^{2}\right)\right)(s)ds\right) - 1$$
$$= \exp\left(-\sigma k^{2}|\lambda|^{-1}T\right) - 1$$
$$\approx -\sigma k^{2}|\lambda|^{-1}.$$

Evans ftn. =
$$\prod$$
 Evans ftn. for blocks.

Stable block:

$$e^{-|\lambda|^{1/3}T}-1<0.$$

Similarly, unstable block gives > 0. Neutral block gives approximately

$$\exp\left(\int_{0}^{|\mu|^{1/3}T} \left(\frac{1}{2}A_{x}\varepsilon + \varepsilon^{2}\left(\frac{1}{2}AA_{x} - \sigma k^{2}\right)\right)(s)ds\right) - 1$$
$$= \exp\left(-\sigma k^{2}|\lambda|^{-1}T\right) - 1$$
$$\approx -\sigma k^{2}|\lambda|^{-1}.$$

Evans ftn. =
$$\prod$$
 Evans ftn. for blocks.

Stable block:

$$e^{-|\lambda|^{1/3}T}-1<0.$$

Similarly, unstable block gives > 0. Neutral block gives approximately

$$\exp\left(\int_{0}^{|\mu|^{1/3}T} \left(\frac{1}{2}A_{x}\varepsilon + \varepsilon^{2}\left(\frac{1}{2}AA_{x} - \sigma k^{2}\right)\right)(s)ds\right) - 1$$
$$= \exp\left(-\sigma k^{2}|\lambda|^{-1}T\right) - 1$$
$$\approx -\sigma k^{2}|\lambda|^{-1}.$$

Evans ftn. =
$$\prod$$
 Evans ftn. for blocks.

Stable block:

$$e^{-|\lambda|^{1/3}T}-1<0.$$

Similarly, unstable block gives > 0. Neutral block gives approximately

$$\exp\left(\int_{0}^{|\mu|^{1/3}T} \left(\frac{1}{2}A_{x}\varepsilon + \varepsilon^{2}\left(\frac{1}{2}AA_{x} - \sigma k^{2}\right)\right)(s)ds\right) - 1$$
$$= \exp\left(-\sigma k^{2}|\lambda|^{-1}T\right) - 1$$
$$\approx -\sigma k^{2}|\lambda|^{-1}.$$

Goal: Compare sign of σ to sgn D(0, k) for $0 < |k| \ll 1$, where $D(0, k) = \det \left(\underbrace{\Psi(T; 0, k) - \Psi(0; 0, k)}_{\Psi(T; 0, 0) - \Psi(0; 0, k) - \sigma k^2 \Psi_{k^2}(T; 0, 0) + \mathcal{O}(k^4)} \right) / \det (\Psi(0; 0, k))$

$\Psi =$ Soln. Matrix in *arbitrary* basis.

Choose useful basis at $(\lambda, k) = (0, 0)$: recall periodic traveling waves parameterized by (a, E, c).

Noether's thm $\Rightarrow \{u_x, u_a, u_E\}$ (formally) solve $\partial_x^2 \mathcal{L}[u]v = 0$.

Fourth soln. found by variation of parameters:

$$\phi(x) := \left(\int_0^x su_E(s)ds\right)u_x(x) - \left(\int_0^x su_s(s)ds\right)u_E(x).$$

Goal: Compare sign of
$$\sigma$$
 to sgn $D(0, k)$ for $0 < |k| \ll 1$, where

$$D(0, k) = \det \left(\underbrace{\Psi(T; 0, k) - \Psi(0; 0, k)}_{\Psi(T; 0, 0) - \Psi(0; 0, k) - \sigma k^2 \Psi_{k^2}(T; 0, 0) + \mathcal{O}(k^4)} \right) / \det (\Psi(0; 0, k))$$

 $\Psi =$ Soln. Matrix in *arbitrary* basis. Choose useful basis at $(\lambda, k) = (0, 0)$: recall periodic traveling waves parameterized by (a, E, c).

Noether's thm $\Rightarrow \{u_x, u_a, u_E\}$ (formally) solve $\partial_x^2 \mathcal{L}[u]v = 0$. Fourth soln. found by variation of parameters:

$$\phi(x) := \left(\int_0^x su_E(s)ds\right)u_x(x) - \left(\int_0^x su_s(s)ds\right)u_E(x).$$

Goal: Compare sign of
$$\sigma$$
 to sgn $D(0, k)$ for $0 < |k| \ll 1$, where

$$D(0, k) = \det \left(\underbrace{\Psi(T; 0, k) - \Psi(0; 0, k)}_{\Psi(T; 0, 0) - \Psi(0; 0, k) - \sigma k^2 \Psi_{k^2}(T; 0, 0) + \mathcal{O}(k^4)} \right) / \det (\Psi(0; 0, k))$$

 $\Psi =$ Soln. Matrix in *arbitrary* basis. Choose useful basis at $(\lambda, k) = (0, 0)$: recall periodic traveling waves parameterized by (a, E, c).

Noether's thm $\Rightarrow \{u_x, u_a, u_E\}$ (formally) solve $\partial_x^2 \mathcal{L}[u]v = 0$.

Fourth soln. found by variation of parameters:

$$\phi(x) := \left(\int_0^x su_E(s)ds\right) u_x(x) - \left(\int_0^x su_s(s)ds\right) u_E(x).$$

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Goal: Compare sign of σ to sgn D(0, k) for $0 < |k| \ll 1$, where $D(0, k) = \det \left(\underbrace{\Psi(T; 0, k) - \Psi(0; 0, k)}_{\Psi(T; 0, 0) - \Psi(0; 0, k) - \sigma k^2 \Psi_{k^2}(T; 0, 0) + \mathcal{O}(k^4)} \right) / \det (\Psi(0; 0, k))$

 Ψ =Soln. Matrix in *arbitrary* basis. Choose useful basis at $(\lambda, k) = (0, 0)$: recall periodic traveling waves parameterized by (a, E, c).

Noether's thm $\Rightarrow \{u_x, u_a, u_E\}$ (formally) solve $\partial_x^2 \mathcal{L}[u]v = 0$.

Fourth soln. found by variation of parameters:

$$\phi(x) := \left(\int_0^x su_E(s)ds\right)u_x(x) - \left(\int_0^x su_s(s)ds\right)u_E(x).$$

- Together {u_x, u_a, u_E, φ} form basis for (formal) null-space of linearization at (λ, k) = (0, 0).
- **Q**: How does this basis bifurcate from *k* = 0 state?
- Use Variation of parameters to compute $\Psi_{k^2}(T; 0, 0)$: If $\{Y_j\}_{j=1}^4$ =Soln. Vecs for basis, then

$$\frac{\partial}{\partial k^2} Y_j(T;0,k)|_{k=0} = \Psi(T;0,0) \int_0^T W(x;0,0)^{-1} (Y_j(x) \cdot e_j) e_4 dx$$

 $e_i=$ standard basis vecs. in \mathbb{R}^4 .

Yields

$$\delta \Psi(0,k) = \delta \Psi(0,0) - \left(\sum_{j=1}^4 \partial_{k^2} Y_j(\mathcal{T};0,k)|_{k=0} \otimes e_j
ight) \sigma k^2 + \mathcal{O}(k^4).$$

- Together {u_x, u_a, u_E, φ} form basis for (formal) null-space of linearization at (λ, k) = (0, 0).
- **Q**: How does this basis bifurcate from k = 0 state?
- Use Variation of parameters to compute $\Psi_{k^2}(T; 0, 0)$: If $\{Y_j\}_{j=1}^4$ =Soln. Vecs for basis, then

$$\frac{\partial}{\partial k^2} Y_j(T;0,k)|_{k=0} = \Psi(T;0,0) \int_0^T W(x;0,0)^{-1} (Y_j(x) \cdot e_j) e_4 dx$$

 $e_i =$ standard basis vecs. in \mathbb{R}^4 .

Yields

$$\delta \Psi(0,k) = \delta \Psi(0,0) - \left(\sum_{j=1}^4 \partial_{k^2} Y_j(\mathcal{T};0,k)|_{k=0} \otimes e_j
ight) \sigma k^2 + \mathcal{O}(k^4).$$

- Together {u_x, u_a, u_E, φ} form basis for (formal) null-space of linearization at (λ, k) = (0, 0).
- **Q**: How does this basis bifurcate from k = 0 state?
- Use Variation of parameters to compute $\Psi_{k^2}(T; 0, 0)$: If $\{Y_j\}_{j=1}^4$ =Soln. Vecs for basis, then

$$\frac{\partial}{\partial k^2} Y_j(T;0,k)|_{k=0} = \Psi(T;0,0) \int_0^T W(x;0,0)^{-1} (Y_j(x) \cdot e_j) e_4 dx$$

 $e_j =$ standard basis vecs. in \mathbb{R}^4 . Yields

$$\delta \Psi(0,k) = \delta \Psi(0,0) - \left(\sum_{j=1}^4 \partial_{k^2} Y_j(T;0,k)|_{k=0} \otimes e_j
ight) \sigma k^2 + \mathcal{O}(k^4).$$

- Together {u_x, u_a, u_E, φ} form basis for (formal) null-space of linearization at (λ, k) = (0, 0).
- **Q**: How does this basis bifurcate from k = 0 state?
- Use Variation of parameters to compute $\Psi_{k^2}(T; 0, 0)$: If $\{Y_j\}_{j=1}^4$ =Soln. Vecs for basis, then

$$\frac{\partial}{\partial k^2} Y_j(T;0,k)|_{k=0} = \Psi(T;0,0) \int_0^T W(x;0,0)^{-1} (Y_j(x) \cdot e_j) e_4 dx$$

$$e_j =$$
standard basis vecs. in \mathbb{R}^4 .

Yields

$$\delta \Psi(0,k) = \delta \Psi(0,0) - \left(\sum_{j=1}^{4} \partial_{k^2} Y_j(T;0,k)|_{k=0} \otimes e_j\right) \sigma k^2 + \mathcal{O}(k^4).$$

Ugly Computation: for $0 < |k| \ll 1$

$$D(0,k) = \det\left(\delta\Psi(0,0) - \left(\sum_{j=1}^{3} \partial_{k^{2}}Y_{j}(T;0,k)|_{k=0} \otimes e_{j}\right)\sigma k^{2}\right) \\ + \mathcal{O}(k^{6}) \\ = -\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right)\underbrace{\left(M^{2} - \|u\|_{L^{2}([0,T])}^{2}T\right)}_{>0 \text{ by Cauchy-Schwarz}} (\sigma k^{2})^{2} + \mathcal{O}(k^{6}),$$

where T = period, $M = \int_0^T u(s) ds = \text{Conserved Quantity (Mass)}$.

$$\therefore \quad \operatorname{sgn} D(0,k) = -\operatorname{sgn} \det \left(\frac{\partial(T,M)}{\partial(a,E)} \right) \quad \forall 0 < |k| \ll 1.$$

Ugly Computation: for $0 < |k| \ll 1$

$$D(0, k) = \det\left(\delta\Psi(0, 0) - \left(\sum_{j=1}^{3} \partial_{k^{2}}Y_{j}(T; 0, k)|_{k=0} \otimes e_{j}\right)\sigma k^{2}\right) \\ + \mathcal{O}(k^{6}) \\ = -\det\left(\frac{\partial(T, M)}{\partial(a, E)}\right)\underbrace{\left(M^{2} - \|u\|_{L^{2}([0, T])}^{2}T\right)}_{>0 \text{ by Cauchy-Schwarz}} (\sigma k^{2})^{2} + \mathcal{O}(k^{6}),$$

where T = period, $M = \int_0^T u(s) ds = \text{Conserved Quantity (Mass)}$.

$$\therefore \quad \operatorname{sgn} D(0,k) = -\operatorname{sgn} \det \left(\frac{\partial(T,M)}{\partial(a,E)} \right) \quad \forall 0 < |k| \ll 1.$$

٠

Theorem (M.J. & K. Zumbrun–2009)

Periodic traveling wave soln. of gKdV is transversely (spectrally) unstable in gKP if

$$\sigma \det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) > 0.$$

Remark: From numerics, above det. is generically non-zero....

Corollary

Periodic traveling wave of gKdV such that above det. is non-zero can **never** be spectrally stable to transverse perturbations in gKP for **both** $\sigma = \pm 1$.

Theorem (M.J. & K. Zumbrun–2009)

Periodic traveling wave soln. of gKdV is transversely (spectrally) unstable in gKP if

$$\sigma \det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) > 0.$$

Remark: From numerics, above det. is generically non-zero....

Corollary

Periodic traveling wave of gKdV such that above det. is non-zero can **never** be spectrally stable to transverse perturbations in gKP for **both** $\sigma = \pm 1$.

Theorem (M.J. & K. Zumbrun–2009)

Periodic traveling wave soln. of gKdV is transversely (spectrally) unstable in gKP if

$$\sigma \det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) > 0.$$

Remark: From numerics, above det. is generically non-zero....

Corollary

Periodic traveling wave of gKdV such that above det. is non-zero can **never** be spectrally stable to transverse perturbations in gKP for **both** $\sigma = \pm 1$.

• KdV:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \frac{-T^2 V'(M/T)}{12 \operatorname{disc}(E - V(\cdot;a,c))} > 0$$

by Jensen's inequality and fact that E - V = cubic w/3 real roots (required for \exists periodic orbits).

 \therefore Cnoidal waves of KdV transversely unstable in KP-I ($\sigma > 0$).

Similar to solitary wave case, and agrees with results of Haragus–2010.

• Focusing mKdV $(f(u) = u^3)$ w/ symmetric potential:

 $\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \begin{cases} > 0, \forall \text{Dnoidal waves} \\ < 0, \forall \text{Cnoidal waves} \end{cases}$

• Other Cases: Use numerics...

• KdV:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \frac{-T^2 V'(M/T)}{12 \operatorname{disc}(E - V(\cdot;a,c))} > 0$$

by Jensen's inequality and fact that E - V = cubic w/3 real roots (required for \exists periodic orbits).

: Cnoidal waves of KdV transversely unstable in KP-I ($\sigma > 0$).

Similar to solitary wave case, and agrees with results of Haragus–2010.

• Focusing mKdV $(f(u) = u^3)$ w/ symmetric potential:

 $\det\left(\frac{\partial(\mathcal{T}, M)}{\partial(a, E)}\right) = \begin{cases} > 0, \forall \text{Dnoidal waves} \\ < 0, \forall \text{Cnoidal waves} \end{cases}$

• Other Cases: Use numerics...

• KdV:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \frac{-T^2 V'(M/T)}{12 \operatorname{disc}(E - V(\cdot;a,c))} > 0$$

by Jensen's inequality and fact that E - V = cubic w/3 real roots (required for \exists periodic orbits).

: Cnoidal waves of KdV transversely unstable in KP-I ($\sigma > 0$).

Similar to solitary wave case, and agrees with results of Haragus–2010.

• Focusing mKdV $(f(u) = u^3)$ w/ symmetric potential:

 $\det\left(\frac{\partial(\mathcal{T}, M)}{\partial(a, E)}\right) = \begin{cases} > 0, \forall \text{Dnoidal waves} \\ < 0, \forall \text{Cnoidal waves} \end{cases}$

• Other Cases: Use numerics...

• KdV:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \frac{-T^2 V'(M/T)}{12 \operatorname{disc}(E - V(\cdot;a,c))} > 0$$

by Jensen's inequality and fact that E - V = cubic w/3 real roots (required for \exists periodic orbits).

: Cnoidal waves of KdV transversely unstable in KP-I ($\sigma > 0$).

Similar to solitary wave case, and agrees with results of Haragus–2010.

• Focusing mKdV ($f(u) = u^3$) w/ symmetric potential:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \begin{cases} > 0, \forall \text{Dnoidal waves} \\ < 0, \forall \text{Cnoidal waves} \end{cases}$$

• Other Cases: Use numerics.

• KdV:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \frac{-T^2 V'(M/T)}{12 \operatorname{disc}(E - V(\cdot;a,c))} > 0$$

by Jensen's inequality and fact that E - V = cubic w/3 real roots (required for \exists periodic orbits).

: Cnoidal waves of KdV transversely unstable in KP-I ($\sigma > 0$).

Similar to solitary wave case, and agrees with results of Haragus–2010.

• Focusing mKdV ($f(u) = u^3$) w/ symmetric potential:

$$\det\left(\frac{\partial(T,M)}{\partial(a,E)}\right) = \begin{cases} > 0, \forall \text{Dnoidal waves} \\ < 0, \forall \text{Cnoidal waves} \end{cases}$$

• Other Cases: Use numerics....

(M.J.–2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x.$$

Result: for $|(\mu,k)|\ll 1$,

$$\begin{split} D(\mu, k) &= -\frac{\mu^3}{2} \det \left(\frac{\partial(T, M, P)}{\partial(a, E, c)} \right) \\ &+ \mu k^2 \det \left(\frac{\partial(T, M)}{\partial(a, E)} \right) \int_0^T u_x^2 dx \\ &+ \mathcal{O}(|\mu|^4 + k^4). \end{split}$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc... Q: Why didn't we do this for KP? A: I'm not smart enough to compute $\partial_{\mu}^{4}D(\mu, k)|_{(\mu,k)=(0,0)}$

(M.J.–2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x.$$

Result: for $|(\mu,k)|\ll 1$,

$$D(\mu, k) = -\frac{\mu^3}{2} \det \left(\frac{\partial(T, M, P)}{\partial(a, E, c)} \right) + \mu k^2 \det \left(\frac{\partial(T, M)}{\partial(a, E)} \right) \int_0^T u_x^2 dx + \mathcal{O}(|\mu|^4 + k^4).$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc... Q: Why didn't we do this for KP? A: I'm not smart enough to compute $\partial_n^4 D(\mu, k)|_{(\mu, k) \in (0, 1)}$

8/18/10

17 / 18

(M.J.–2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x.$$

Result: for $|(\mu,k)|\ll 1$,

$$\begin{split} D(\mu, k) &= -\frac{\mu^3}{2} \det \left(\frac{\partial(T, M, P)}{\partial(a, E, c)} \right) \\ &+ \mu k^2 \det \left(\frac{\partial(T, M)}{\partial(a, E)} \right) \int_0^T u_x^2 dx \\ &+ \mathcal{O}(|\mu|^4 + k^4). \end{split}$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc...

Q: Why didn't we do this for KP?

A. The not smart enough to compute $o_{\mu}D(\mu, \kappa)$

(M.J.–2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$u_t = \left(u_{xx} + u_{yy}\right)_x + f(u)_x.$$

Result: for $|(\mu,k)|\ll 1$,

$$\begin{split} D(\mu, k) &= -\frac{\mu^3}{2} \det \left(\frac{\partial(T, M, P)}{\partial(a, E, c)} \right) \\ &+ \mu k^2 \det \left(\frac{\partial(T, M)}{\partial(a, E)} \right) \int_0^T u_x^2 dx \\ &+ \mathcal{O}(|\mu|^4 + k^4). \end{split}$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc... **Q:** Why didn't we do this for KP?

(M.J.–2009) Similar techniques used to study transverse instability of periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

$$u_t = (u_{xx} + u_{yy})_x + f(u)_x.$$

Result: for $|(\mu,k)|\ll 1$,

$$\begin{split} D(\mu, k) &= -\frac{\mu^3}{2} \det \left(\frac{\partial(T, M, P)}{\partial(a, E, c)} \right) \\ &+ \mu k^2 \det \left(\frac{\partial(T, M)}{\partial(a, E)} \right) \int_0^T u_x^2 dx \\ &+ \mathcal{O}(|\mu|^4 + k^4). \end{split}$$

Yields spectral instability criterion for small k. Criterion is verified for cnoidal waves of KdV, dnoidal waves of mKdV, etc...

- **Q:** Why didn't we do this for KP?
- **A:** I'm not smart enough to compute $\partial^4_{\mu} D(\mu, k)|_{(\mu, k)=(0,0)}$.

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at k=0) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).
- "Big" Open Problem: Can anyone say anything about STABILITY???

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at k=0) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).
- "Big" Open Problem: Can anyone say anything about STABILITY???

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at k=0) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).
- "Big" Open Problem: Can anyone say anything about STABILITY???

- Overall, techniques seem general, so long as basis for (formal) null-space of linearization (at k=0) can be found.
- Actually, don't even need to "find" one explicitly.... but calculations are MUCH messier (conservation law people do this).
- "Big" Open Problem: Can anyone say anything about STABILITY???