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gKP Equations

The gKP equations are given by

(ut − uxxx − f (u)x)x + σuyy = 0, σ = ±1.

Weakly two-dimensional version of the gKdV equation

ut = uxxx + f (u)x .

Special Case: f (u) = 1
2
u2 (KdV-nonlinearity)

KP-I if σ = +1: model for thin films with high surface tension.
KP-II if σ = −1: model for water waves with small surface tension.

Other multi-d generalizations exist: gZK (Zakharov-Kuznetsov)
eqns.

ut = (uxx + uyy )x + f (u)x

but KP has extra degeneracy which presents interesting
mathematical difficulty.
Take Away: Solutions of gKdV = unidirectional
(y -independent) solution of gKP .
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gKP Equations

Main Problem: When are stable solutions of gKdV stable in the
gKP equation?
Have answers for solitary waves, i.e. when limx→±∞ u(x) = 0:

σ > 0 ⇒ solitary waves stable in gKdV, but unstable in gKP. Instability
is to low-frequency perturbations.
σ < 0 ⇒ depends on nonlinearity. KdV: transversely stable, but ∃
nonlinearities with unstable solitary waves to low-frequency
perturbations.
Results based on multi-scale analysis...

Few answers for spatially periodic waves:
(Haragus-2010) Small amplitude limit in KdV: σ < 0 stable, σ > 0
unstable. (Finished after our work?)
Others????
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Periodic Traveling Waves

Seek traveling wave solutions of gKdV

ut = uxxx + f (u)x .

Stationary solution in moving coordinate frame x − ct:

uxxx + f (u)x − cux = 0

Integrable: ∃ constants a,E ∈ R such that

u2
x

2
= E −

(∫ x

f (u(z))dz − c

2
u2 − au

)
︸ ︷︷ ︸

V (u;a,c)

Solitary waves: bdry conditions ⇒ a = E = 0.

∃ (mod translations) three parameter family of periodic traveling
wave solutions of gKdV, parameterized by (a,E , c).
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Transverse Stability

Given a T = T (a,E , c) periodic solution u(x ; a,E , c) of gKdV,
want to determine stability in gKP.
Strategy: linearize gKP about wave u(x , y) := u(x ; a,E , c)

∂x

 ∂xL[u]︸ ︷︷ ︸
lin. gKdV

 v + σvyy = vxt , v(·, y , t) ∈ L2
per([0,T ]),

and take transforms (Fourier in y , Laplace in t):

∂x (∂xL[u]) v − σk2v = λvx .

Corresponding to transverse perturbations of form

v(x , y , t) = eλt+ikyv(x), v(·) ∈ L2
per([0,T ]).

Spectral instability if ∃ T -periodic eigenvalue λ with <(λ) > 0.
How do we locate these eigenvalues?
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Evans Ftn.

Write spec problem as

Y ′ = A(x ;λ, k)Y

Ψ(x ;λ, k) =Solution matrix. Floquet Theory⇒ λ is in T-periodic
spec. of gen. e.val. problem iff

D(λ; k) = det
(
Ψ(T ;λ, k)Ψ(0;λ, k)−1 − Id

)
= 0

Why? Ψ(T )Ψ(0)−1 =Period Map...
Spectral instability if ∃ <(λ) > 0 such that D(λ; k) = 0.
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Evans Ftn.

Strategy: Search for real unstable e.v.’s by comparing D(+∞; k)
with D(0, k) when 0 < |k | � 1.

D(+∞; k)D(0, k) < 0⇒ ∃ unstable λ > 0.

Note: Generally, one compares D(+∞, k) with slope at µ = 0.
BUT, D(0, k) 6= 0 for small k , so only need to compute D(0, k).
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High Freq. Analysis

Fix k , and rescale x̃ = |λ|1/3x to obtain(
−∂4

x − |λ|−2/3∂2
x (f ′(u) + c)− σk2|λ|−4/3

)
v = vx

Write as 1st order system

Y ′ =


0 1 0 0
0 0 1 0
0 0 0 1
0 −1 0 0


︸ ︷︷ ︸

H0

Y + B(λ)Y

where B(λ) = O(|λ|−2/3). Expect for λ� 1

D(λ; k) ≈ det
(
eH0|λ|1/3T − Id

)
= 0.

Can we determine the limiting sign?
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GOAL: determine effect of B(λ) on neutral subspace of H0 for λ� 1.
FACT: ∃ (T -periodic) linear transformation Q = Q0 +O(ε) such that

Q−1H0Q = diag(−1, ω, ω∗, 0)︸ ︷︷ ︸
Q−1

0 H0Q0

+

(
O(ε) O(ε)
O(ε) O(ε3/2)

)
,

with ω = 1
2
(1 + i

√
3), and

Q−1B(λ)Q =

(
O(ε) O(ε)
O(ε3/2) 1

2
Axε +

(
1
2
AAx − σk2

)
ε2

)
,

where A = T -periodic, ε := |λ|−2/3.
⇒ coefficient matrix

Q−1(H0 + B(λ))Q

is approximately block-triangular.... is this good enough?
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Block-triangular tracking lemma: ∃ a T -periodic change of
coordinates W = ZY of form

Z =

(
I3 0
Φ 1

)
where Φ = O(ε3/2), taking system to an exact upper block triangular
form with diagonal blocks

−1 +O(ε),

(
ω 0
0 ω∗

)
+O(ε)

and
1

2
Axε + ε2

(
1

2
AAx − σk2

)
+O(ε5/2).
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Block-triangular form plus periodicity of coordinate changes ⇒

Evans ftn. =
∏

Evans ftn. for blocks.

Stable block:
e−|λ|

1/3T − 1 < 0.

Similarly, unstable block gives > 0. Neutral block gives approximately

exp

(∫ |µ|1/3T

0

(
1

2
Axε + ε2

(
1

2
AAx − σk2

))
(s)ds

)
− 1

= exp
(
−σk2|λ|−1T

)
− 1

≈ −σk2|λ|−1.

∴ ∀k 6= 0, limλ→+∞ sgn D(λ; k) = sgn(σ).
Remark: Same proof works in Solitary wave case.... never been done
this way(?).
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Low-Freq. Analysis

Goal: Compare sign of σ to sgn D(0, k) for 0 < |k | � 1, where

D(0, k) = det

 Ψ(T ; 0, k)−Ψ(0; 0, k)︸ ︷︷ ︸
Ψ(T ;0,0)−Ψ(0;0,k)−σk2Ψk2 (T ;0,0)+O(k4)

 / det (Ψ(0; 0, k))

Ψ =Soln. Matrix in arbitrary basis.
Choose useful basis at (λ, k) = (0, 0): recall periodic traveling waves
parameterized by (a,E , c).

Noether’s thm ⇒ {ux , ua, uE} (formally) solve ∂2
xL[u]v = 0.

Fourth soln. found by variation of parameters:

φ(x) :=

(∫ x

0

suE (s)ds

)
ux(x)−

(∫ x

0

sus(s)ds

)
uE (x).
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Together {ux , ua, uE , φ} form basis for (formal) null-space of
linearization at (λ, k) = (0, 0).

Q: How does this basis bifurcate from k = 0 state?

Use Variation of parameters to compute Ψk2(T ; 0, 0): If
{Yj}4

j=1=Soln. Vecs for basis, then

∂

∂k2
Yj(T ; 0, k)|k=0 = Ψ(T ; 0, 0)

∫ T

0

W (x ; 0, 0)−1 (Yj(x) · ej) e4dx

ej =standard basis vecs. in R4.

Yields

δΨ(0, k) = δΨ(0, 0)−

(
4∑

j=1

∂k2Yj(T ; 0, k)|k=0 ⊗ ej

)
σk2+O(k4).

where δΨ(0, ·) = Ψ(T ; 0, ·)−Ψ(0; 0, k).
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Ugly Computation: for 0 < |k | � 1

D(0, k) = det

(
δΨ(0, 0)−

(
3∑

j=1

∂k2Yj(T ; 0, k)|k=0 ⊗ ej

)
σk2

)
+O(k6)

= − det

(
∂(T ,M)

∂(a,E )

)(
M2 − ‖u‖2

L2([0,T ])T
)

︸ ︷︷ ︸
>0 by Cauchy-Schwarz

(
σk2
)2

+O(k6),

where T =period, M =
∫ T

0
u(s)ds =Conserved Quantity (Mass).

∴ sgn D(0, k) = − sgn det

(
∂(T ,M)

∂(a,E )

)
∀0 < |k | � 1.
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Instability

Theorem (M.J. & K. Zumbrun–2009)

Periodic traveling wave soln. of gKdV is transversely (spectrally)
unstable in gKP if

σ det

(
∂(T ,M)

∂(a,E )

)
> 0.

Remark: From numerics, above det. is generically non-zero....

Corollary

Periodic traveling wave of gKdV such that above det. is non-zero can
never be spectrally stable to transverse perturbations in gKP for
both σ = ±1.
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Calculations (M.J., J. C. Bronski, & T. Kapitula–2010)

KdV:

det

(
∂(T ,M)

∂(a,E )

)
=

−T 2V ′(M/T )

12disc(E − V (·; a, c))
> 0

by Jensen’s inequality and fact that E − V =cubic w/ 3 real
roots (required for ∃ periodic orbits).

∴ Cnoidal waves of KdV transversely unstable in KP-I (σ > 0).

Similar to solitary wave case, and agrees with results of
Haragus–2010.

Focusing mKdV (f (u) = u3) w/ symmetric potential:

det

(
∂(T ,M)

∂(a,E )

)
=

{
> 0,∀Dnoidal waves
< 0,∀Cnoidal waves

Other Cases: Use numerics....
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Final Remarks: Long-Wavelength Instabilities

(M.J.–2009) Similar techniques used to study transverse instability of
periodic gKdV waves in gZK (Zakharov-Kuznetsov) eqns.

ut = (uxx + uyy )x + f (u)x .

Result: for |(µ, k)| � 1,

D(µ, k) = −µ
3

2
det

(
∂(T ,M ,P)

∂(a,E , c)

)
+ µk2 det

(
∂(T ,M)

∂(a,E )

)∫ T

0

u2
xdx

+O(|µ|4 + k4).

Yields spectral instability criterion for small k . Criterion is verified for
cnoidal waves of KdV, dnoidal waves of mKdV, etc...
Q: Why didn’t we do this for KP?
A: I’m not smart enough to compute ∂4

µD(µ, k)|(µ,k)=(0,0).
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Final Remarks

Overall, techniques seem general, so long as basis for (formal)
null-space of linearization (at k=0) can be found.

Actually, don’t even need to “find” one explicitly.... but
calculations are MUCH messier (conservation law people do this).

“Big” Open Problem: Can anyone say anything about
STABILITY???

Thank You!
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