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Introduction:

We consider SPECTRAL STABILITY of periodic traveling wave
solutions of scalar evolution equations of form

ut +Mux +
(
u2
)
x

= 0,

where
M̂u(ξ) = m(ξ)û(ξ).

Note M is NONLOCAL unless the linear phase velocity m(ξ) is
a polynomial function of ξ.

Common Applications: Models of unidirectional propagation of small
amplitude surface water waves / internal waves / plasmas / etc.

Theme: If stubbornly restrict to local theory, can not see important
physical phenomena.
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Common Examples:

KdV: m(ξ) = 1− ξ2.

Models small amp., long-wavelength, surf. water waves.

Kawahara: m(ξ) = 1− ξ2 + ξ4.

Models small amp., long-wavelength, surf. water waves. for
Weber numbers ≈ 1/3.

Benjamin-Ono: m(ξ) = |ξ|.
Models small amp. deep internal waves.

Intermediate Long Wave Equation: m(ξ) = ξ coth(ξ)− 1.

Models small amp. internal waves.

Fractional KdV: m(ξ) = |ξ|−1/2.

Models small amp., infinite depth short surface periodic water
waves (Hur, 2012).
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Known Results:

If only consider local equations....

KdV wave trains are spectrally stable: Spector (1988), Bottman
& Deconinck (2009).

Small Kawahara wave trains are spectrally stable: Haragus,
Lombardi, Scheel (2006).

But, both “model” finite depth surface water wave problem, which
exhibits modulational instaiblity of short waves (Benjamin-Feir
instability)!

To capture Benjamin-Feir instability, local equations may not be
enough....

Naive Fix: Try BBM.... but these wavetrains are modulationally
stable: Haragus (2008), M.J. (2010).
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Finite Depth Periodic Surface Water Waves:

Modeled as periodic traveling wave solutions of water wave
problem, ie. a free-surface Euler equation under influence of gravity
over flat bottom.

Fact : Up to rescaling, seeking solutions of form εe i(ωt−ξx),
ω > 0, of full water wave problem leads to linear phase velocity

c(ξ) =
ω(ξ)

ξ
=

√
tanh(hξ)

ξ
, h = undisturbed depth == 1

for small amp. periodic surface water waves with frequency ξ.
Note: For long waves (|ξ| � 1) have

c(ξ) ≈

KdV︷ ︸︸ ︷
1− 1

6
ξ2 +

19

360
ξ4︸ ︷︷ ︸

Kawahara

+O(ξ6).

Truncation leads to LOCAL evolution equation.
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Long Wave Approximations:

Another common long wave approx. is the BBM, with phase velocity

c(ξ) =
1

1 + 1
6
ξ2

Note: KdV, Kawahara are poor approximates for short waves.
BBM better, but c(ξ) wrong for short waves...
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Whitham Equation:

To analyze stability of finite depth periodic surface water waves,
propose to study the Whitham Equation (Whitham 1974)

ut +Mux +
(
u2
)
x

= 0,

where M has symbol

m(ξ) =

√
tanh(ξ)

ξ
.

This “fake” water wave approx. introduced by Whitham to explain
wave breaking.

Theorem (Vera Mikyoung Hur, M.J., preprint)

Whitham eqn. exhibits B.F. instability, i.e. small amplitude periodic
traveling waves with frequency k > 0 are...

Spectrally stable if k is sufficiently small.

Modulationally unstable if k is sufficiently large.
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Existence Theory:

Seek traveling wave u(x , t) = φ(x − ct), c > 0 is wavespeed.

Profile v satisfies

−cφ +Mφ + φ2 = (1− c)2b, b ∈ R.

Known Results:
Ehrnström & Kalish (2009): When b = 0, ∃ small amplitude
periodic traveling waves for each c ∈ (0, 1).

Proof uses Crandall-Rabinowitz bifurcation theorem.

Ehrnström, Groves, & Wahlén (2012): ∃ solitary waves.
Proof uses constrained minimization principle & concentration
compactness.

We need ∃ theory for small periodic traveling waves TOGETHER
with dependence on b.
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Existence Theory:

Seek periodic solutions v(z) = P(kz), P(·+ 2π) = P .

⇒ P must satisfy

−cP + P2 + M̃kP = (1− c)2b, F
(
M̃kv

)
(ξ) = m(kξ)v̂(ξ).

Using Lyapunov-Schmidt, find 3-parameter family of small amp.
periodic traveling waves:

Pa,b(z) = Qb + a cos(z) +
1

2

(
−1

1−m(k)
+

cos(2z)

m(k)−m(2k)

)
a2 + H .O.T .

ca,b = c0,b +

(
−1

1−m(k)
+

1

2(m(k)−m(2k))

)
a2 +O

(
|a|(a2 + b2)

)
where

Qb = b(1−m(k)) +O(b2), c0,b := m(k) + 2b(1−m(k)) +O(b2).
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Linearized Equations:

After rescaling, Pa,b(z) is a 2π-periodic stationary solution of PDE

ut − ca,buz + M̃kuz +
(
u2
)
z

= 0.

Linearizing about Pa,b leads to spectral problem

∂z

M̃k − ca,b + 2Pa,b︸ ︷︷ ︸
La,b

 v = λv .

considered on L2(R) (localized perturbations).

Pa,b is spectrally stable if σL2(R) (∂zLa,b) ⊂ Ri .

First difficulty: spectrum is continuous & Floquet theory does
not apply.
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Spectral Stability: Setup

Using Bloch decompositions, can derive “nonlocal Floquet theory”:

σL2(R) (∂zLa,b) =
⋃

ξ∈[−1/2,1/2)

σL2(R/2πZ) (JξLa,b,ξ)︸ ︷︷ ︸
Isolated e.v.’s

,

where Jξ := e−iξz∂ze iξz = ∂z + iξ and

La,b,ξ := e−iξzLa,be iξz .

Here, ξ “≈” relative frequency of perturbation to Pa,b.

ξ = 0 ⇒ co-periodic perturbations.

|ξ| � 1 ⇒ long-wavelength perturbations (regime of MI).

Next difficulty: How to determine spectrum of JξLa,b,ξ for
|(a, b)| � 1?

Mathew Johnson (University of Kansas) Stability KdV Type Waves 9/26/2012 11 / 18



Spectral Stability: Equilibrium solution

Stability of P0,0 = 0 solution governed by L2(R) spectrum of operator

∂z

(
M̃k −m(k)

)
︸ ︷︷ ︸

L0,0

.

Fourier Analysis ⇒
σ (L0,0,ξ) = {ωn,ξ : n ∈ Z} ⊂ R

where ωn,ξ = [m(k(n + ξ))−m(k)]. In particular, for
ξ ∈ [−1/2, 1/2) have

σ (L0,0,ξ) = {ω0,ξ, ω±1,ξ}︸ ︷︷ ︸
σ1(L0,0,ξ)

⋃
{ωn,ξ : |n| ≥ 2}︸ ︷︷ ︸

σ2(L0,0,ξ)≥Ck

,

where ∀ v in spectral subspace for σ2(L0,0,ξ), have

〈v ,L0,0,ξv〉 ≥ Ck‖v‖2.
Fact: Spectral properties persist for |(a, b)| � 1.
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⋃
{i(n + ξ)ωn,ξ : |n| ≥ 2}︸ ︷︷ ︸
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.

All e.v.’s in σ2 (JξL0,0,ξ) have positive Krein signature ⇒ they
remain purely imaginary for |(a, b)| � 1.

At ξ = 0, ω0,0 = ω±1,0 = 0... more delicate analysis needed here.
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Determination of σ1(JξLa,b,ξ):

|ξ| > ξ0 > 0:

The three eigenvalues are simple.
The three eigenvalues are symmetric about Ri .

⇒ σ1 (JξLa,b,ξ) ⊂ Ri .

ξ ≈ 0:

Determine basis {ηj(z ; a, b, ξ)}j=0,1,2 for spectral subspace for
σ1(JξLa,b,ξ).
Critical eigenvalues for |(a, b, ξ)| � 1 found by solving

P(λ, a, b, ξ; k) = det

([〈
ηj
‖ηj‖2

, (JξLa,b,ξ − λI) ηl
〉]

j,l=0,1,2

)
= 0

for λ.
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Determination of σ1(JξLa,b,ξ):

Fact: P(λ, a, b, ξ) = cubic poly. in X = −iλ/ξ with discriminant

∆a,b,ξ,k = ∆0,0,ξ,k + γ(k)a2 +O(a2(a2 + ξ2 + |b|)).

For |ξ| � 1 have

∆0,0,ξ,k ≈ 0.0625k12ξ2 + H .O.T .

⇒ Stability determined by sign of γ(k).

k
Γ(k)

0.2 0.4 0.6 0.8 1.0 1.2

-0.010

-0.005

0.005

Note: γ(k) = 1
4
k8 +O(k9) > 0 for |k | � 1.
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MI Index:

k
Γ(k)

0.2 0.4 0.6 0.8 1.0 1.2

-0.010

-0.005

0.005

γ(k) > 0 for k < k∗ ≈ 1.146

⇒ sufficiently long waves are stable!!

γ(k) < 0 for k > k∗

⇒ sufficiently short waves are unstable!!

This (qualitatively) is the finite depth Benjamin-Feir instability!!!

Mathew Johnson (University of Kansas) Stability KdV Type Waves 9/26/2012 16 / 18



Generalizations:

Calculation is (nearly) independent of m(ξ)....

Ex: Small periodic wave trains in fractional KdV equation

ut +
√
−∂2αx ux +

(
up+1

)
x

= 0, α ≥ 1, p ≥ 1

are spectrally stable for 1 < p < p∗(α) and modulationally unstable if
p > p∗(α).

p=p*(Α)

0 5 10 15 20
Α1.0

1.2

1.4

1.6

1.8

2.0

2.2

p

Result illustrates difference between dispersion on line and
“dispersion” on circle.
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What’s Next?

NO IDEA!!!..... but stability for nonlocal equations poorly
understood.

We like ODE things... but this can be too specialized.

What tools fundamentally rely on ODE structure of spectral
stability problem and which ones do not?

What are appropriate generalizations of these tools that are “too
specialized”?

Also, instability theory often neglected....

What happens dynamically to unstable solutions? Poorly
understood problem even in local theory!

Mathew Johnson (University of Kansas) Stability KdV Type Waves 9/26/2012 18 / 18



What’s Next?

NO IDEA!!!..... but stability for nonlocal equations poorly
understood.

We like ODE things... but this can be too specialized.

What tools fundamentally rely on ODE structure of spectral
stability problem and which ones do not?

What are appropriate generalizations of these tools that are “too
specialized”?

Also, instability theory often neglected....

What happens dynamically to unstable solutions? Poorly
understood problem even in local theory!

Mathew Johnson (University of Kansas) Stability KdV Type Waves 9/26/2012 18 / 18



What’s Next?

NO IDEA!!!..... but stability for nonlocal equations poorly
understood.

We like ODE things... but this can be too specialized.

What tools fundamentally rely on ODE structure of spectral
stability problem and which ones do not?

What are appropriate generalizations of these tools that are “too
specialized”?

Also, instability theory often neglected....

What happens dynamically to unstable solutions? Poorly
understood problem even in local theory!

Mathew Johnson (University of Kansas) Stability KdV Type Waves 9/26/2012 18 / 18


