Index Theorems for the Stability of Periodic Traveling Waves of KdV Type

Mathew A. Johnson
University of Kansas

September 21, 2011

Joint work with Jared Bronski (UIUC) and Todd Kapitula (Calvin College)

Outline

(1) Intro to GKdV Stability Theory
(2) Periodic Case: Spectral Stability
(3) Computations
(4) Nonlinear (Orbital) Stability
(5) Conclusions

Introduction

Consider the KdV equation

$$
u_{t}=u_{x x x}+f(u)_{x}
$$

where $f(u)$ is "nice". Arise in applications with a variety of nonlinearities.

- $f(u)=u^{2} \Rightarrow \mathrm{KdV}$ equation. Canonical model for weakly dispersive nonlinear unidirectional wave propagation.
- $f(u)= \pm u^{3} \Rightarrow$ focusing/defocusing mKdV equation. Arises naturally in plasma physics as a model for ion acoustic perturbations.
- $f(u)=\alpha u^{r+1 / 2}$ for $r \in\left(-\frac{1}{2}, \frac{1}{2}\right) \ldots$ has been derived in several plasma physics models.
Also interesting for mathematical study: $f(u)=u^{5}$ is L^{2} critical, and KdV and mKdV are completely integrable PDE!

Traveling Waves of form $u(x, t)=\bar{u}(x+c t)$ are basic structures in nonlinear waves!

- Characteristics:
(1) Constant velocity c
(2) Same shape and profile!

\therefore Traveling wave profile \bar{u} is STATIONARY solution of PDE

$$
u_{t}=u_{x x x}+f(u)_{x}-c u_{x},
$$

i.e. solves ODE

$$
u^{\prime \prime \prime}+f(u)^{\prime}-c u^{\prime}=0
$$

After one integration, this is a HAMILTONIAN ODE!!!

Wave profile u must satisfy ODE

$$
\frac{u_{x}^{2}}{2}=E-\underbrace{F(u)-\frac{c u^{2}}{2}+a u}_{V(u ; a, c)}, \quad F^{\prime}=f
$$

where $a, E \in \mathbb{R}$ depend on boundary conditions imposed.

Summary of \exists theory

Solitary Waves:

- If $\bar{u}(x) \rightarrow$ const. when $x \rightarrow \pm \infty$, have "Solitary wave".
- In this case, a and E fixed by b.c.'s at $\pm \infty$, so have two parameter family of traveling waves:

$$
\bar{u}\left(x+x_{0}-c t ; c\right) .
$$

Summary of \exists theory

Solitary Waves:

- If $\bar{u}(x) \rightarrow$ const. when $x \rightarrow \pm \infty$, have "Solitary wave".
- In this case, a and E fixed by b.c.'s at $\pm \infty$, so have two parameter family of traveling waves:

$$
\bar{u}\left(x+x_{0}-c t ; c\right) .
$$

Periodic Waves:

- If $\bar{u}(x+T)=\bar{u}(x)$ for some $T>0$, have "periodic wave".
- In this case, a and E are "free", so have four parameter family of traveling waves:

$$
\bar{u}\left(x+x_{0}-c t ; a, E, c\right), \quad \text { period } T=T(a, E, c)
$$

Summary of \exists theory

Solitary Waves:

- If $\bar{u}(x) \rightarrow$ const. when $x \rightarrow \pm \infty$, have "Solitary wave".
- In this case, a and E fixed by b.c.'s at $\pm \infty$, so have two parameter family of traveling waves:

$$
\bar{u}\left(x+x_{0}-c t ; c\right) .
$$

Periodic Waves:

- If $\bar{u}(x+T)=\bar{u}(x)$ for some $T>0$, have "periodic wave".
- In this case, a and E are "free", so have four parameter family of traveling waves:

$$
\bar{u}\left(x+x_{0}-c t ; a, E, c\right), \quad \text { period } T=T(a, E, c)
$$

- In special cases, \bar{u} can be expressed in terms of elliptic functions.

We make no use of this extra structure in our analysis...

Solitary Wave Stability Theory:

Linearization of gKdV flow about solitary wave with $\bar{u}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$:

$$
-v_{t}=\partial_{x} \underbrace{\left(-\partial_{x}^{2}-f^{\prime}(\bar{u})+c\right)}_{\mathcal{L}[\bar{u}]} v, \quad v \in L^{2}(\mathbb{R}) .
$$

Seek separated solution $v(x, t)=e^{-\lambda t} v(x)$ leads to spectral problem

$$
\partial_{x} \mathcal{L}[\bar{u}] v=\lambda v .
$$

Spectral stability iff $\sigma\left(\partial_{x} \mathcal{L}[\bar{u}]\right)=\sigma_{\text {ess }}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \cup \sigma_{\rho}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \subset i \mathbb{R}$.

Solitary Wave Stability Theory:

Linearization of gKdV flow about solitary wave with $\bar{u}(x) \rightarrow 0$ as $x \rightarrow \pm \infty$:

$$
-v_{t}=\partial_{x} \underbrace{\left(-\partial_{x}^{2}-f^{\prime}(\bar{u})+c\right)}_{\mathcal{L}[\bar{u}]} v, \quad v \in L^{2}(\mathbb{R}) .
$$

Seek separated solution $v(x, t)=e^{-\lambda t} v(x)$ leads to spectral problem

$$
\partial_{x} \mathcal{L}[\bar{u}] v=\lambda v .
$$

Spectral stability iff $\sigma\left(\partial_{x} \mathcal{L}[\bar{u}]\right)=\sigma_{\text {ess }}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \cup \sigma_{p}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \subset i \mathbb{R}$. Essential Spectrum: Linear dispersion relation about background $\bar{u} \equiv 0$ state is

$$
i k\left(k^{2}-f^{\prime}(0)+c\right)=\lambda \Rightarrow \sigma_{\text {ess }}\left(\partial_{x} \mathcal{L}[\bar{u}]\right)=i \mathbb{R} .
$$

Point Spectrum: Eigenvalues of $\partial_{x} \mathcal{L}[\bar{u}]$, acting on $L^{2}(\mathbb{R})$, determined by roots of "Evans Function" (transmission coefficient) $D(\lambda)$.

- $D(\lambda)$ detects intersections of stable mfld. at $+\infty$ and unstable mfld at $-\infty$.
- Complex analytic in λ.
- Roots agree in location and (algebraic) multiplicity of e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$.

Fact 1

(1) $\operatorname{sign}(D(\lambda))=1$ for $\lambda \gg 1$.
(2) For some constant $A>0$,

$$
D(\lambda)=A\left(\left.\partial_{c} \int_{\mathbb{R}} u(x ; c)^{2} d x\right|_{\bar{u}}\right) \lambda^{2}+\mathcal{O}\left(|\lambda|^{3}\right) .
$$

Thus, have spectral instability if $\partial_{c} \int_{\mathbb{R}} u(x ; c)^{2} d x<0$ at \bar{u}.

FACT 2: [Pego\& Weinstein 1992] $0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[\bar{u}])$.
FACT 3: For solitary waves, $n_{-}(\mathcal{L}[\bar{u}])=1$. Proof: \bar{u}^{\prime} satisfies $\mathcal{L}[\bar{u}] \bar{u}^{\prime}=0$ and has only one root on \mathbb{R}. Sturm Liouville Theory $\Rightarrow 0$ is second eigenvalue of $\mathcal{L}[\bar{u}]$.

FACT 2: [Pego\& Weinstein 1992] $0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[\bar{u}])$.
FACT 3: For solitary waves, $n_{-}(\mathcal{L}[\bar{u}])=1$.
Proof: \bar{u}^{\prime} satisfies $\mathcal{L}[\bar{u}] \bar{u}^{\prime}=0$ and has only one root on \mathbb{R}. Sturm
Liouville Theory $\Rightarrow 0$ is second eigenvalue of $\mathcal{L}[\bar{u}]$.
\therefore all unstable eigenvalues must be real!!

FACT 2: [Pego\& Weinstein 1992] $0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[\bar{u}])$.
FACT 3: For solitary waves, $n_{-}(\mathcal{L}[\bar{u}])=1$.
Proof: \bar{u}^{\prime} satisfies $\mathcal{L}[\bar{u}] \bar{u}^{\prime}=0$ and has only one root on \mathbb{R}. Sturm
Liouville Theory $\Rightarrow 0$ is second eigenvalue of $\mathcal{L}[\bar{u}]$.
\therefore all unstable eigenvalues must be real!!
\therefore Spectral stability iff $\partial_{c} \int_{\mathbb{R}} u(x ; c)^{2} d x>0$ at \bar{u}.

FACT 2: [Pego\& Weinstein 1992] $0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[\bar{u}])$.
FACT 3: For solitary waves, $n_{-}(\mathcal{L}[\bar{u}])=1$.
Proof: \bar{u}^{\prime} satisfies $\mathcal{L}[\bar{u}] \bar{u}^{\prime}=0$ and has only one root on \mathbb{R}. Sturm Liouville Theory $\Rightarrow 0$ is second eigenvalue of $\mathcal{L}[\bar{u}]$.
\therefore all unstable eigenvalues must be real!!
\therefore Spectral stability iff $\partial_{c} \int_{\mathbb{R}} u(x ; c)^{2} d x>0$ at \bar{u}.
Further, Fact $3 \Rightarrow$ condition necessary/sufficient for nonlinear (orbital) stability!

Periodic Case?

Periodic Case is much more complicated:
(1) "More" of them: 4 parameter family, compared to 2 parameter family of solitary waves.
(2) More general classes of perturbations available:
(a) Co-periodic $=L^{2}(\mathbb{R} / T \mathbb{Z})$.
(b) Sub-harmonic $=L^{2}(\mathbb{R} / n T \mathbb{Z}), n \in \mathbb{N}, n>1$.
(c) Localized $=L^{2}(\mathbb{R})$... Most Physical!
(3) Structure of spec.: may be only eigenvalues, may be only essential spec... depends on class of perturbations.
(4) $n_{-}(\mathcal{L}[\bar{u}])$ can be arbitrarially large (or "uncountable") depending on class of perturbations.

Periodic Stability Theory

- Let \bar{u} be T-periodic stationary solution of the nonlinear PDE

$$
u_{t}=u_{x x x}+f(u)_{x}-c u_{x}
$$

Consider a perturbation of $\bar{u}: \psi(x, t)=\bar{u}(x)+\varepsilon v(x, t), v \in X$.

$$
\Rightarrow \partial_{x} \underbrace{\left(-\partial_{x}^{2}-f^{\prime}(\bar{u})+c\right)}_{\mathcal{L}[\bar{u}]} v=-v_{t}
$$

Decompose $v(x, t)=e^{-\lambda t} v(x)$ so v solves the spectral problem

$$
\partial_{x} \mathcal{L}[u] v=\lambda v
$$

considered on X.
Spectral stability to X-perturbations $\Longleftrightarrow \operatorname{spec}_{X}\left(\partial_{x} \mathcal{L}[u]\right) \subset \mathbb{R} i$.

Goal: analyze spectral problem

$$
\partial_{x} \mathcal{L}[\bar{u}] v=\lambda v, \quad v \in X . \quad(\star)
$$

What is structure of $\operatorname{spec}_{x}\left(\partial_{x} \mathcal{L}[u]\right)$?

Goal: analyze spectral problem

$$
\partial_{x} \mathcal{L}[\bar{u}] v=\lambda v, \quad v \in X . \quad(\star)
$$

What is structure of $\operatorname{spec}_{X}\left(\partial_{x} \mathcal{L}[u]\right)$?
(1) If $X=L^{2}(\mathbb{R} / n T \mathbb{Z})$, then

$$
\operatorname{spec}_{X}\left(\partial_{x} \mathcal{L}[u]\right)=\operatorname{spec}_{X, p}\left(\partial_{x} \mathcal{L}[u]\right)
$$

$\Rightarrow(\star)$ is an eigenvalue problem!!

Goal: analyze spectral problem

$$
\partial_{x} \mathcal{L}[\bar{u}] v=\lambda v, \quad v \in X . \quad(\star)
$$

What is structure of $\operatorname{spec}_{X}\left(\partial_{x} \mathcal{L}[u]\right)$?
(1) If $X=L^{2}(\mathbb{R} / n T \mathbb{Z})$, then

$$
\operatorname{spec}_{X}\left(\partial_{x} \mathcal{L}[u]\right)=\operatorname{spec}_{X, p}\left(\partial_{x} \mathcal{L}[u]\right)
$$

$\Rightarrow(\star)$ is an eigenvalue problem!!
(2) If $X=L^{2}(\mathbb{R})$, then

$$
\operatorname{spec}_{X}\left(\partial_{x} \mathcal{L}[u]\right)=\operatorname{spec}_{X, \text { ess }}\left(\partial_{x} \mathcal{L}[u]\right)
$$

$\Rightarrow(\star)$ has no eigenvalues... all instabilities come from essential sepc.!!!

Localized Perturbations: $X=L^{2}(\mathbb{R})$

- To see this, wite spectral problem as first order system

$$
Y^{\prime}(x, \lambda)=\mathbf{H}(x, \lambda) Y(x, \lambda)
$$

Localized Perturbations: $X=L^{2}(\mathbb{R})$

- To see this, wite spectral problem as first order system

$$
Y^{\prime}(x, \lambda)=\mathbf{H}(x, \lambda) Y(x, \lambda)
$$

- Period Map (Monodromy): $\mathbf{M}(\lambda)=\Phi(T, \lambda)$, where $\Phi(x, \lambda)$ is the matrix solution such that $\Phi(0, \lambda)=\mathbf{I}$.

Localized Perturbations: $X=L^{2}(\mathbb{R})$

- To see this, wite spectral problem as first order system

$$
Y^{\prime}(x, \lambda)=\mathbf{H}(x, \lambda) Y(x, \lambda)
$$

- Period Map (Monodromy): $\mathbf{M}(\lambda)=\Phi(T, \lambda)$, where $\Phi(x, \lambda)$ is the matrix solution such that $\Phi(0, \lambda)=\mathbf{I}$. Thus, $\mathbf{M}(\lambda)$ is an operator such that

$$
\mathbf{M}(\lambda) v(x, \lambda)=v(x+T, \lambda)
$$

for any $x \in \mathbb{R}$ and vector solution $v(x, \lambda)$.

Localized Perturbations: $X=L^{2}(\mathbb{R})$

- To see this, wite spectral problem as first order system

$$
Y^{\prime}(x, \lambda)=\mathbf{H}(x, \lambda) Y(x, \lambda)
$$

- Period Map (Monodromy): $\mathbf{M}(\lambda)=\Phi(T, \lambda)$, where $\Phi(x, \lambda)$ is the matrix solution such that $\Phi(0, \lambda)=\mathbf{I}$. Thus, $\mathbf{M}(\lambda)$ is an operator such that

$$
\mathbf{M}(\lambda) v(x, \lambda)=v(x+T, \lambda)
$$

for any $x \in \mathbb{R}$ and vector solution $v(x, \lambda)$. For simplicity, assume that $v(x, \lambda)$ satisfies

$$
\mathbf{M}(\lambda) v(x, \lambda)=\mu v(x, \lambda)
$$

Then for all $n \in \mathbb{Z}$ have

$$
v(N T, \lambda)=\mathbf{M}(\lambda)^{N} v(0, \lambda)=\mu^{N} v(0, \lambda)
$$

Localized Perturbations: $X=L^{2}(\mathbb{R})$

- To see this, wite spectral problem as first order system

$$
Y^{\prime}(x, \lambda)=\mathbf{H}(x, \lambda) Y(x, \lambda)
$$

- Period Map (Monodromy): $\mathbf{M}(\lambda)=\Phi(T, \lambda)$, where $\Phi(x, \lambda)$ is the matrix solution such that $\Phi(0, \lambda)=\mathbf{I}$. Thus, $\mathbf{M}(\lambda)$ is an operator such that

$$
\mathbf{M}(\lambda) v(x, \lambda)=v(x+T, \lambda)
$$

for any $x \in \mathbb{R}$ and vector solution $v(x, \lambda)$. For simplicity, assume that $v(x, \lambda)$ satisfies

$$
\mathbf{M}(\lambda) v(x, \lambda)=\mu v(x, \lambda)
$$

Then for all $n \in \mathbb{Z}$ have

$$
v(N T, \lambda)=\mathbf{M}(\lambda)^{N} v(0, \lambda)=\mu^{N} v(0, \lambda)
$$

\Rightarrow if $v(x, \lambda) \rightarrow 0$ as $x \rightarrow+\infty$, then $\lim _{x \rightarrow-\infty}|v(x, \lambda)|=+\infty$.

Best you can hope for is for v to be uniformly bounded, i.e. $|\lambda|=1$.

- Gives characterization of (continuous) spectrum:

$$
\lambda \in \operatorname{spec}\left(\partial_{x} \mathcal{L}[u]\right) \Longleftrightarrow \sigma(\mathbf{M}(\lambda)) \bigcap S^{1} \neq \emptyset .
$$

Best you can hope for is for v to be uniformly bounded, i.e. $|\lambda|=1$.

- Gives characterization of (continuous) spectrum:

$$
\lambda \in \operatorname{spec}\left(\partial_{x} \mathcal{L}[u]\right) \Longleftrightarrow \sigma(\mathbf{M}(\lambda)) \bigcap S^{1} \neq \emptyset .
$$

Following Gardner then, we define

$$
D\left(\lambda, e^{i \kappa}\right)=\operatorname{det}\left(\mathbf{M}(\lambda)-e^{i \kappa} \mathbf{I}\right)
$$

Then $\lambda \in \operatorname{spec}\left(\partial_{x} \mathcal{L}[u]\right) \Longleftrightarrow D\left(\lambda, e^{i \kappa}\right)=0$ for some $\kappa \in \mathbb{R}$.

Best you can hope for is for v to be uniformly bounded, i.e. $|\lambda|=1$.

- Gives characterization of (continuous) spectrum:

$$
\lambda \in \operatorname{spec}\left(\partial_{x} \mathcal{L}[u]\right) \Longleftrightarrow \sigma(\mathbf{M}(\lambda)) \bigcap S^{1} \neq \emptyset .
$$

Following Gardner then, we define

$$
D\left(\lambda, e^{i \kappa}\right)=\operatorname{det}\left(\mathbf{M}(\lambda)-e^{i \kappa} \mathbf{I}\right)
$$

Then $\lambda \in \operatorname{spec}\left(\partial_{x} \mathcal{L}[u]\right) \Longleftrightarrow D\left(\lambda, e^{i \kappa}\right)=0$ for some $\kappa \in \mathbb{R}$.

- Moreover,

$$
\operatorname{spec}_{L^{2}(\mathbb{R})}\left(\partial_{x} \mathcal{L}[u]\right)=\bigcup_{\kappa \in[-\pi, \pi)}\left\{\lambda \in \mathbb{C}: D\left(\lambda, e^{i \kappa}\right)=0\right\}
$$

Remark:

If $\kappa \in 2 \pi \mathbb{Q}$, then bounded solution of

$$
\mathbf{M}(\lambda) v=e^{i \kappa} v
$$

is $n T$ periodic for some $n \in \mathbb{N}$, i.e. $\lambda \in \sigma_{L^{2}(\mathbb{R} / n T \mathbb{Z})}\left(\partial_{x} \mathcal{L}[\bar{u}]\right)$.

$$
\Rightarrow \quad \operatorname{spec}_{L^{2}(\mathbb{R})}\left(\partial_{x} \mathcal{L}[u]\right)=\overline{\bigcup_{n \in \mathbb{N}} \operatorname{spec}_{L^{2}(\mathbb{R} / n T \mathbb{N})}\left(\partial_{x} \mathcal{L}[u]\right)}
$$

\therefore spec. stable in $L^{2}(\mathbb{R})$ iff spec. stable in $L^{2}(\mathbb{R} / n T \mathbb{Z}) \forall n \in \mathbb{N}$.

Analyaisis of Evans ftn.

\exists theory gives a lot of information about spectrum at $\lambda=0$.

- Have 4-dim manifold

$$
\mathcal{M}=\left\{u\left(x+x_{0}-c t ; a, E, c\right)\right\}
$$

of stationary solutions of gKdV

$$
u_{t}-u_{x x x}-f(u)_{x}+c u_{x}=0 .
$$

- Diff. Geometry \Rightarrow equation

$$
\left(\partial_{t}-\partial_{x} \mathcal{L}[\bar{u}]\right) v=0
$$

defines tan. space of \mathcal{M} at fixed solution \bar{u}.

- Tan. space at \bar{u} generated by variations:

$$
\mathcal{T}_{\bar{u}}(\mathcal{M})=\operatorname{span}\left\{u_{x}, u_{\mathrm{a}}, u_{E},-t u_{x}+u_{c}\right\}
$$

- Follows that (formally)

$$
\partial_{x} \mathcal{L}[u]\left\{u_{x}, u_{a}, u_{E}\right\}=0, \quad \partial_{x} \mathcal{L}[u] u_{c}=-u_{x} .
$$

Periodic Stability Theory

\therefore have full set of (formal) solutions to ODE

$$
\partial_{x} \mathcal{L}[u] v=0
$$

Moreover, \bar{u}_{x} is T-periodic... follows that

$$
D(0,1)=\operatorname{det}(\mathbf{M}(0)-\mathbf{I})=0
$$

Want to find curve $\kappa \rightarrow \lambda(\kappa)$ defined in neighborhood of $(\lambda, \kappa)=(0,0)$ such that

$$
D\left(\lambda(\kappa), e^{i \kappa}\right)=\operatorname{det}\left(\mathbf{M}(\lambda(\kappa))-e^{i \kappa}\right)=0
$$

Would be easy if we could use implicit function theorem, i.e. if

$$
\left.\partial_{\lambda} D(\lambda, 1)\right|_{\lambda=0} \neq 0
$$

Evaluate of $\left.\partial_{\lambda} D(\lambda, 1)\right|_{\lambda=0}$

- At $\lambda=0,\left\{u_{x}, u_{a}, u_{E}\right\}$ provides three linearly independent solutions of the formal differential equation

$$
\partial_{x} \mathcal{L}[u] v=0
$$

Thus, can explicitly construct monodromy matrix at $\lambda=0$.

Evaluate of $\left.\partial_{\lambda} D(\lambda, 1)\right|_{\lambda=0}$

- At $\lambda=0,\left\{u_{x}, u_{a}, u_{E}\right\}$ provides three linearly independent solutions of the formal differential equation

$$
\partial_{x} \mathcal{L}[u] v=0
$$

Thus, can explicitly construct monodromy matrix at $\lambda=0$.

- By analyticity of $\mathbf{M}(\lambda)$, have

$$
\mathbf{M}(\lambda)=\mathbf{M}(0)+\lambda \mathbf{M}_{\lambda}(0)+\mathcal{O}\left(|\lambda|^{2}\right)
$$

We use perturbation theory to find $\mathbf{M}_{\lambda}(\lambda) \ldots$

Evaluate of $\left.\partial_{\lambda} D(\lambda, 1)\right|_{\lambda=0}$

- At $\lambda=0,\left\{u_{x}, u_{a}, u_{E}\right\}$ provides three linearly independent solutions of the formal differential equation

$$
\partial_{x} \mathcal{L}[u] v=0
$$

Thus, can explicitly construct monodromy matrix at $\lambda=0$.

- By analyticity of $\mathbf{M}(\lambda)$, have

$$
\mathbf{M}(\lambda)=\mathbf{M}(0)+\lambda \mathbf{M}_{\lambda}(0)+\mathcal{O}\left(|\lambda|^{2}\right)
$$

We use perturbation theory to find $\mathbf{M}_{\lambda}(\lambda) \ldots$

- Variation of parameters formula yields first order variation in u_{a} and u_{E} columns.

Evaluate of $\left.\partial_{\lambda} D(\lambda, 1)\right|_{\lambda=0}$

- At $\lambda=0,\left\{u_{x}, u_{a}, u_{E}\right\}$ provides three linearly independent solutions of the formal differential equation

$$
\partial_{x} \mathcal{L}[u] v=0
$$

Thus, can explicitly construct monodromy matrix at $\lambda=0$.

- By analyticity of $\mathbf{M}(\lambda)$, have

$$
\mathbf{M}(\lambda)=\mathbf{M}(0)+\lambda \mathbf{M}_{\lambda}(0)+\mathcal{O}\left(|\lambda|^{2}\right)
$$

We use perturbation theory to find $\mathbf{M}_{\lambda}(\lambda) \ldots$

- Variation of parameters formula yields first order variation in u_{a} and u_{E} columns. Moreover, u_{c} solves

$$
\partial_{x} \mathcal{L}[u] u_{c}=-u_{x}
$$

Follows that $-u_{c}$ gives first order λ-variation in translation $\left(u_{x}\right)$ direction!!!! Thus, we have constructed $\mathbf{M}_{\lambda}(0)$.

Asymptotic Expansion of $D(\lambda, 1)$

- Taking determinants then, we have

$$
\frac{d}{d \lambda} D(\lambda, 1)=\left.\operatorname{det}\left(\mathbf{M}(0)+\lambda \mathbf{M}_{\lambda}(0)-I+\mathcal{O}\left(|\lambda|^{2}\right)\right)\right|_{\lambda=0}=0
$$

\Rightarrow Implicit Function Theorem fails!!!!!

- We need to determine next order term $\mathbf{M}_{\lambda \lambda}(0)$. Can be done by using variation of parameters again!

Asymptotic Expansion for $D(\lambda, 1)$

- Ugly algebra yields

$$
D(\lambda, 1)=-\frac{1}{2} \underbrace{\frac{\partial(T, M, P)}{\partial(a, E, c)}}_{\{T, M, P\}_{a, E, c}} \lambda^{3}+\mathcal{O}\left(|\lambda|^{4}\right)
$$

where $T=$ period and M and P refer to the mass and momentum:

$$
M=\int_{0}^{T} u(x) d x \quad P=\int_{0}^{T} u(x)^{2} d x
$$

M and P are conserved quantities of the gKdV flow!

Asymptotic Expansion for $D(\lambda, 1)$

- Ugly algebra yields

$$
D(\lambda, 1)=-\frac{1}{2} \underbrace{\frac{\partial(T, M, P)}{\partial(a, E, c)}}_{\{T, M, P\}_{a, E, c}} \lambda^{3}+\mathcal{O}\left(|\lambda|^{4}\right)
$$

where $T=$ period and M and P refer to the mass and momentum:

$$
M=\int_{0}^{T} u(x) d x \quad P=\int_{0}^{T} u(x)^{2} d x
$$

M and P are conserved quantities of the gKdV flow!

- Thus, $D(\lambda, 1)=\mathcal{O}\left(|\lambda|^{3}\right)$ and hence more care is needed to use the implicit function theorem.
- In particular, follows there are in general three branches of spectrum which bifurcate from the $\lambda=0$ state for $|\kappa| \ll 1$.
- Continuing above computations, local analysis around $(\lambda, \kappa)=(0,0)$ yields

$$
\begin{aligned}
D\left(\lambda, e^{i \kappa}\right) & =i \kappa^{3}+\frac{i \kappa \lambda^{2}}{2}\left(\{T, P\}_{E, c}+2\{M, P\}_{a, E}\right) \\
& -\frac{\lambda^{3}}{2}\{T, M, P\}_{a, E, c}+\mathcal{O}\left(|\lambda|^{4}+\kappa^{4}\right)
\end{aligned}
$$

where the notation $\{f, g\}_{x, y}$ is used for two-by-two Jacobians.

- Continuing above computations, local analysis around $(\lambda, \kappa)=(0,0)$ yields

$$
\begin{aligned}
D\left(\lambda, e^{i \kappa}\right) & =i \kappa^{3}+\frac{i \kappa \lambda^{2}}{2}\left(\{T, P\}_{E, c}+2\{M, P\}_{a, E}\right) \\
& -\frac{\lambda^{3}}{2}\{T, M, P\}_{a, E, c}+\mathcal{O}\left(|\lambda|^{4}+\kappa^{4}\right)
\end{aligned}
$$

where the notation $\{f, g\}_{x, y}$ is used for two-by-two Jacobians.

- Defining $z=\frac{i \kappa}{\lambda}$, we see z must be a root of

$$
P(z)=-z^{3}+\frac{z}{2}\left(\{T, P\}_{E, c}+2\{M, P\}_{a, E}\right)-\frac{1}{2}\{T, M, P\}_{a, E, c}
$$

and hence have modulational stability when P has three real roots!

M.J. \& Bronski (ARMA - 2010)

Define

$$
\Delta_{M I}:=\frac{1}{2}\left(\{T, P\}_{E, c}+2\{M, P\}_{a, E}\right)^{3}-\frac{27}{4}\{T, M, P\}_{a, E, c}^{2} .
$$

$$
\Delta_{M I}>0
$$

$\Delta_{M I}<0$

Index $\Delta_{M I}$ detects instabilities to "long-wavelength" perturbations, i.e. to \tilde{T}-periodic perturbations with

$$
0<|T-\tilde{T}| \ll 1
$$

Such instabilities sometimes called "modulational" or "side-band".
Can also use above computations to detect "co-periodic" ($\kappa=0$) instabilities, i.e. stabilities in $L^{2}(\mathbb{R} / T \mathbb{Z})$.

Recall, from above, that $D(\lambda, 1)=-\frac{1}{2}\{T, M, P\}_{a, E, c} \lambda^{3}+\mathcal{O}\left(|\lambda|^{4}\right)$. Also, can prove that

$$
\lim _{\lambda \rightarrow \infty} \operatorname{sign}(D(\lambda, 1))<0
$$

M.J. \& Bronski (ARMA - 2010)

Yields orientation index

$$
\lim _{\lambda \rightarrow 0^{+}} \operatorname{sign}(D(\lambda, 1)) \lim _{\lambda \rightarrow \infty} \operatorname{sign}(D(\lambda, 1))=\operatorname{sign}\left(\{T, M, P\}_{a, E, c}\right) .
$$

If $\{T, M, P\}_{a, E, c}<0$, then $D(\lambda, 1)=0$ for some $\lambda>0$.

M.J. \& Bronski (ARMA - 2010)

Yields orientation index

$$
\lim _{\lambda \rightarrow 0^{+}} \operatorname{sign}(D(\lambda, 1)) \lim _{\lambda \rightarrow \infty} \operatorname{sign}(D(\lambda, 0))=\operatorname{sign}\left(\{T, M, P\}_{a, E, c}\right) .
$$

$$
\text { If }\{T, M, P\}_{a, E, c}>0 \text {, then } D(\lambda, 1)<0 \text { for all } \lambda>0 \text { ? }
$$

M.J. \& Bronski (ARMA - 2010)

Yields orientation index

$$
\lim _{\lambda \rightarrow 0^{+}} \operatorname{sign}(D(\lambda, 1)) \lim _{\lambda \rightarrow \infty} \operatorname{sign}(D(\lambda, 0))=\operatorname{sign}\left(\{T, M, P\}_{a, E, c}\right) .
$$

$$
\text { If }\{T, M, P\}_{a, E, c}>0 \text {, then } D(\lambda, 1)<0 \text { for all } \lambda>0 \text { ? }
$$

Yes, if for $\mathcal{L}[u]$ considered on $L^{2}(\mathbb{R} / T \mathbb{Z}), n_{-}(\mathcal{L}[u])=1$. (Same argument as in Solitary wave case!)

Q: How does this compare with Solitary Wave theory when $\bar{f}(u)=u^{p+1}, c>0$.

Using standard asymptotic methods, can show that in "homoclinic limit"

$$
\{T, M, P\}_{a, E, c} \sim-T_{E} M_{a} P_{c}
$$

and where $T_{E}>0$ (clearly) and $M_{a}<0$ (computation).
Thus, in homoclinic limit,

$$
\operatorname{sign}\left(\{T, M, P\}_{a, E, c}\right)=\operatorname{sign}\left(P_{c}\right)=\operatorname{sign}\left(\partial_{c} \int_{0}^{T} u^{2} d x\right)
$$

Q: How does this compare with Solitary Wave theory when $\bar{f}(u)=u^{p+1}, c>0$.

Using standard asymptotic methods, can show that in "homoclinic limit"

$$
\{T, M, P\}_{a, E, c} \sim-T_{E} M_{a} P_{c}
$$

and where $T_{E}>0$ (clearly) and $M_{a}<0$ (computation).
Thus, in homoclinic limit,

$$
\operatorname{sign}\left(\{T, M, P\}_{a, E, c}\right)=\operatorname{sign}\left(P_{c}\right)=\operatorname{sign}\left(\partial_{c} \int_{0}^{T} u^{2} d x\right)
$$

Moreover, by scaling, have

$$
\operatorname{sign}\left(P_{c}\right)=\operatorname{sign}\left(\frac{2}{p c}-\frac{1}{2 c}\right)=\operatorname{sign}(4-p)
$$

Agrees with results from Solitary wave theory!!!

Computation?

- OK, so you have an expression which "determines" when a particular wave is modulationally stable..... can you compute it?!
- YES!!!
(1) For power-law nonlinearities $\left(f(u)=u^{p+1}\right)$ with $p \in \mathbb{N}$, can determine explicit formula for MI index in terms of moments of the underlying wave.
(2) For non-power-law, must rely on numerics..... but at least you now have a determined quantity to do numerics on!

Modulational Theory for KdV

- In case of KdV

$$
u_{t}=u_{x x x}+\left(\frac{u^{2}}{2}\right)_{x}
$$

can express conserved quantities and period as integrals of closed cycles over a Riemann surface, and hence we can compute MI index using elliptic function calculations (Picard-Fuchs system).

- Get

$$
\Delta_{M I}=C_{0} \cdot \frac{N^{2}}{\operatorname{disc}(E-V(\cdot ; a, E, c))}
$$

where $C_{0}>0$.

- Notice $\operatorname{disc}(E-V(\cdot ; a, E, c))>0$ iff the corresponding solution is periodic, so all periodic waves of KdV are modulatioanlly stable!!!!

Modulational Theory for mKdV $f(u)=u^{3} w / c>0$

L^{2}-Critical KdV $f(u)=u^{5}($ with positive wavespeed $)$

Nonlinear (Orbital) Stability

Q: Does spectral stability \Rightarrow Orbital Stability?

Nonlinear (Orbital) Stability

Q: Does spectral stability \Rightarrow Orbital Stability?

- True for solitary waves!
- Depends on class of perturbations for periodic case!!

Nonlinear (Orbital) Stability

Q: Does spectral stability \Rightarrow Orbital Stability?

- True for solitary waves!
- Depends on class of perturbations for periodic case!!

In periodic case, if consider perturbations in...

- $L^{2}(\mathbb{R} / T \mathbb{Z})$, then

$$
0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[u])=1 \text { or } 2
$$

so, sometimes, spec. stable \Rightarrow orbital stable (same argument from solitary wave case).

Nonlinear (Orbital) Stability

Q: Does spectral stability \Rightarrow Orbital Stability?

- True for solitary waves!
- Depends on class of perturbations for periodic case!!

In periodic case, if consider perturbations in...

- $L^{2}(\mathbb{R} / T \mathbb{Z})$, then

$$
0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[u])=1 \text { or } 2
$$

so, sometimes, spec. stable \Rightarrow orbital stable (same argument from solitary wave case).

- $L^{2}(\mathbb{R} / n T \mathbb{Z})$, then

$$
n \leq n_{-}(\mathcal{L}[\bar{u}]) \leq n+1
$$

so solitary wave argument goes out window!

- For $\mathrm{KdV} / \mathrm{mKdV}$, can work around this for any $n \in \mathbb{N}$!
- KdV/mKdV proof follows "multi-soliton" stability approach.
- Nothing known outside integrable context...

Nonlinear (Orbital) Stability

Q: Does spectral stability \Rightarrow Orbital Stability?

- True for solitary waves!
- Depends on class of perturbations for periodic case!!

In periodic case, if consider perturbations in...

- $L^{2}(\mathbb{R} / T \mathbb{Z})$, then

$$
0 \leq n_{-}\left(\partial_{x} \mathcal{L}[\bar{u}]\right) \leq n_{-}(\mathcal{L}[u])=1 \text { or } 2
$$

so, sometimes, spec. stable \Rightarrow orbital stable (same argument from solitary wave case).

- $L^{2}(\mathbb{R} / n T \mathbb{Z})$, then

$$
n \leq n_{-}(\mathcal{L}[\bar{u}]) \leq n+1
$$

so solitary wave argument goes out window!

- For $\mathrm{KdV} / \mathrm{mKdV}$, can work around this for any $n \in \mathbb{N}$!
- KdV/mKdV proof follows "multi-soliton" stability approach.
- Nothing known outside integrable context...
- $L^{2}(\mathbb{R}) \ldots$ NO CLUE!!!

Result of Deconinck \& Kapitula: $\forall n \in \mathbb{N}$,

$$
k_{u}^{+}(n)+k_{i}^{-}(n)=n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{H^{1}(n)}\right)-n(D)
$$

where
(a) $k_{u}^{+}(n)=\#$ Unstable e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$ on $L^{2}(\mathbb{R} / n T \mathbb{Z}) \mathrm{w} /$ $\Re(\lambda)>0$.
(b) $k_{i}^{-}(n)=\#$ Purely imaginary e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$ on $L^{2}(\mathbb{R} / n T \mathbb{Z})$ with negative Krein signature:

$$
v \in N\left(\partial_{x} \mathcal{L}[u]-\lambda\right), \quad \kappa(v):=\langle v, \mathcal{L}[u] v\rangle_{L^{2}([0, n T])} .
$$

and
(a) $H^{1}(n)=$ Mean-zero subspace of $L^{2}(\mathbb{R} / n T \mathbb{Z})$.
(b) D is a finite-dimensional matrix containing information about $N_{g}\left(\partial_{x} \mathcal{L}[\bar{u}]\right)$ on $L^{2}(\mathbb{R} / T \mathbb{Z})$.

Result of Deconinck \& Kapitula: $\forall n \in \mathbb{N}$,

$$
k_{u}^{+}(n)+k_{i}^{-}(n)=n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{H^{1}(n)}\right)-n(D)
$$

where
(a) $k_{u}^{+}(n)=\#$ Unstable e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$ on $L^{2}(\mathbb{R} / n T \mathbb{Z}) \mathrm{w} /$ $\Re(\lambda)>0$.
(b) $k_{i}^{-}(n)=\#$ Purely imaginary e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$ on $L^{2}(\mathbb{R} / n T \mathbb{Z})$ with negative Krein signature:

$$
v \in N\left(\partial_{x} \mathcal{L}[u]-\lambda\right), \quad \kappa(v):=\langle v, \mathcal{L}[u] v\rangle_{L^{2}([0, n T])} .
$$

and
(a) $H^{1}(n)=$ Mean-zero subspace of $L^{2}(\mathbb{R} / n T \mathbb{Z})$.
(b) D is a finite-dimensional matrix containing information about $N_{g}\left(\partial_{x} \mathcal{L}[\bar{u}]\right)$ on $L^{2}(\mathbb{R} / T \mathbb{Z})$.
Main Point: If $k_{u}^{+}(n)>0$ for some n, have instability... what if $=0$?

Result of Deconinck \& Kapitula: $\forall n \in \mathbb{N}$,

$$
k_{u}^{+}(n)+k_{i}^{-}(n)=n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{H^{1}(n)}\right)-n(D)
$$

where
(a) $k_{u}^{+}(n)=\#$ Unstable e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$ on $L^{2}(\mathbb{R} / n T \mathbb{Z}) \mathrm{w} /$ $\Re(\lambda)>0$.
(b) $k_{i}^{-}(n)=\#$ Purely imaginary e.v.'s of $\partial_{x} \mathcal{L}[\bar{u}]$ on $L^{2}(\mathbb{R} / n T \mathbb{Z})$ with negative Krein signature:

$$
v \in N\left(\partial_{x} \mathcal{L}[u]-\lambda\right), \quad \kappa(v):=\langle v, \mathcal{L}[u] v\rangle_{L^{2}([0, n T])}
$$

and
(a) $H^{1}(n)=$ Mean-zero subspace of $L^{2}(\mathbb{R} / n T \mathbb{Z})$.
(b) D is a finite-dimensional matrix containing information about $N_{g}\left(\partial_{x} \mathcal{L}[\bar{u}]\right)$ on $L^{2}(\mathbb{R} / T \mathbb{Z})$.
Main Point: If $k_{u}^{+}(n)>0$ for some n, have instability... what if $=0$?
(1) If "LHS" $=0$, then have orbital stability in $L^{2}(\mathbb{R} / n T \mathbb{Z})$.
(2) If "LHS" $=0$ is odd, have spectral instability in $L^{2}(\mathbb{R} / n T \mathbb{Z})$.

Q: How can you compute $n\left(\left.\mathcal{L}[u]\right|_{H^{1}(n)}\right)-n(D)$?

Q: How can you compute $n\left(\left.\mathcal{L}[u]\right|_{H^{1}(n)}\right)-n(D)$?

- When considering special solutions, use elliptic function calculations.
- Usually provides very explicit conclusions.
- Can be technically tedious, but usually straight forward.
- BUT, sometimes can miss bigger picture...

Q: How can you compute $n\left(\left.\mathcal{L}[u]\right|_{H^{1}(n)}\right)-n(D)$?

- When considering special solutions, use elliptic function calculations.
- Usually provides very explicit conclusions.
- Can be technically tedious, but usually straight forward.
- BUT, sometimes can miss bigger picture...
- In general, can reformulate count in terms of the "Jacobians" seen before!

Theorem:[Bronski, M.J., Kapitula (to appear)] We have

$$
k_{u}^{+}(n)+k_{i}^{-}(n)=2 n-p\left(\partial^{2} K(\bar{u})\right)
$$

where $K=K(a, E, c)$ is the classical action (in sense of action-angle variables) of the traveling wave ODE

$$
\frac{u_{x}^{2}}{2}=E-V(u ; a, E, c)
$$

and $p(A)$ denotes the number of positive eigenvalues of a given matrix A.

Theorem:[Bronski, M.J., Kapitula (to appear)] We have

$$
k_{u}^{+}(n)+k_{i}^{-}(n)=2 n-p\left(\partial^{2} K(\bar{u})\right)
$$

where $K=K(a, E, c)$ is the classical action (in sense of action-angle variables) of the traveling wave ODE

$$
\frac{u_{x}^{2}}{2}=E-V(u ; a, E, c)
$$

and $p(A)$ denotes the number of positive eigenvalues of a given matrix A.

Here $K(a, E, c)=\oint_{\Gamma} p d q=\oint_{\Gamma} \sqrt{E-V(u ; a, E, c)} d u$ is a generating function for the conserved quantities of the gKDV flow:

$$
K_{a}=M, \quad K_{E}=T, \quad K_{c}=P
$$

So, $\partial^{2} K(\bar{u})$ is expressed in terms of derivatives of T, M, P with respect to (a, E, c).

Theorem:[Bronski, M.J., Kapitula (to appear)] We have

$$
k_{u}^{+}(n)+k_{i}^{-}(n)=2 n-p\left(\partial^{2} K(\bar{u})\right)
$$

where $K=K(a, E, c)$ is the classical action (in sense of action-angle variables) of the traveling wave ODE

$$
\frac{u_{x}^{2}}{2}=E-V(u ; a, E, c)
$$

and $p(A)$ denotes the number of positive eigenvalues of a given matrix A.

Here $K(a, E, c)=\oint_{\Gamma} p d q=\oint_{\Gamma} \sqrt{E-V(u ; a, E, c)} d u$ is a generating function for the conserved quantities of the gKDV flow:

$$
K_{a}=M, \quad K_{E}=T, \quad K_{c}=P
$$

So, $\partial^{2} K(\bar{u})$ is expressed in terms of derivatives of T, M, P with respect to (a, E, c).

In particular, for $f(u)=u^{p}$ can express $p\left(\partial^{2} K(\bar{u})\right)$ in terms of moments of the wave \bar{u} itself!

Idea of Proof...

The major steps:
(1) $n\left(\left.\mathcal{L}[\bar{u}]\right|_{H^{1}(n)}\right)=n(\mathcal{L}[\bar{u}])+$ "fudge factor".
(2) $n(\mathcal{L}[\bar{u}])=2 n-1+n_{-}\left(T_{E}\right) \ldots$ so unstable e.v.'s may be complex!!!
(3) Determine $n_{-}(D) \ldots$ relates to Jordan co-periodic Jordan block at $\lambda=0$.

Proofs are new to literature, but based on VERY classical ideas.

Step 1: Relate $n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{\mu^{1}(n)}\right)$ and $n_{-}(\mathcal{L}[\bar{u}])$

Lemma: Spse. T is invertible, bounded below with compact resolvant. Let S be a subspace with $\operatorname{dim}(S)=d$. Then

$$
n_{-}\left(\left.T\right|_{S}\right)+n_{-}\left(\left.T^{-1}\right|_{S^{\perp}}\right)=n_{-}(T) .
$$

Step 1: Relate $n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{\mu^{1}(n)}\right)$ and $n_{-}(\mathcal{L}[\bar{u}])$

Lemma: Spse. T is invertible, bounded below with compact resolvant. Let S be a subspace with $\operatorname{dim}(S)=d$. Then

$$
n_{-}\left(\left.T\right|_{S}\right)+n_{-}\left(\left.T^{-1}\right|_{S^{\perp}}\right)=n_{-}(T) .
$$

- $\left(H^{1}(n)\right)^{\perp}=\operatorname{span}(1)$, so

$$
n_{-}\left(\mathcal{L}^{-1}\left(H^{1}(n)\right)^{\perp}\right)=n_{-}\left(\left\langle 1, \mathcal{L}^{-1}(1)\right\rangle\right)
$$

Step 1: Relate $n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{\mu^{1}(n)}\right)$ and $n_{-}(\mathcal{L}[\bar{u}])$

Lemma: Spse. T is invertible, bounded below with compact resolvant. Let S be a subspace with $\operatorname{dim}(S)=d$. Then

$$
n_{-}\left(\left.T\right|_{S}\right)+n_{-}\left(\left.T^{-1}\right|_{S^{\perp}}\right)=n_{-}(T) .
$$

- $\left(H^{1}(n)\right)^{\perp}=\operatorname{span}(1)$, so

$$
n_{-}\left(\mathcal{L}^{-1}\left(H^{1}(n)\right)^{\perp}\right)=n_{-}\left(\left\langle 1, \mathcal{L}^{-1}(1)\right\rangle\right)
$$

- Traveling waves satisfy

$$
u_{x x}+f(u)-c u=a \quad \Rightarrow \quad \mathcal{L} u_{a}=1, \quad \mathcal{L} u_{E}=0 .
$$

Step 1: Relate $n_{-}\left(\left.\mathcal{L}[\bar{u}]\right|_{H^{1}(n)}\right)$ and $n_{-}(\mathcal{L}[\bar{u}])$

Lemma: Spse. T is invertible, bounded below with compact resolvant. Let S be a subspace with $\operatorname{dim}(S)=d$. Then

$$
n_{-}\left(\left.T\right|_{S}\right)+n_{-}\left(\left.T^{-1}\right|_{S^{\perp}}\right)=n_{-}(T) .
$$

- $\left(H^{1}(n)\right)^{\perp}=\operatorname{span}(1)$, so

$$
n_{-}\left(\mathcal{L}^{-1}\left(H^{1}(n)\right)^{\perp}\right)=n_{-}\left(\left\langle 1, \mathcal{L}^{-1}(1)\right\rangle\right)
$$

- Traveling waves satisfy

$$
u_{x x}+f(u)-c u=a \quad \Rightarrow \quad \mathcal{L} u_{a}=1, \quad \mathcal{L} u_{E}=0
$$

- Thus (since $T_{E} u_{a}-T_{a} u_{E}$ is T-periodic),

$$
\left\langle 1, \mathcal{L}^{-1}(1)\right\rangle=\int_{0}^{T}\left(u_{a}-\frac{T_{a}}{T_{E}} u_{E}\right) d x=\frac{\{T, M\}_{a, E}}{T_{E}} .
$$

Step 2: Compute $n_{-}(\mathcal{L})$

Notice $\mathcal{L}=-\partial_{x}^{2}-f^{\prime}(u)+c$ is a linear Schrodinger operator $w /$ periodic coefficients.

Step 2: Compute $n_{-}(\mathcal{L})$

Notice $\mathcal{L}=-\partial_{x}^{2}-f^{\prime}(u)+c$ is a linear Schrodinger operator $w /$ periodic coefficients.
Facts: Considered as an operator on $L^{2}(\mathbb{R} / n T \mathbb{Z})$,

- Spec. of \mathcal{L} determined by Floquet discriminate $k(\lambda)$:

$$
\lambda \in \operatorname{spec}(\mathcal{L}) \text { iff } k(\lambda)=2
$$

- Translation invariance of $\mathrm{gKdV} \Rightarrow \mathcal{L} u^{\prime}=0 \Rightarrow k(0)=2$.
- u^{\prime} has 2 n roots on $[0, n T) \Rightarrow$ Sturm Liouville Theory says zero is either $n^{\text {th }}$ or $(n+1)$ st eigenvalue of \mathcal{L}.
- To see which, look at $k^{\prime}(0) \ldots$

Step 2: Compute $n_{-}(\mathcal{L})$ (Cont.)

Fact: $\operatorname{sign}\left(k^{\prime}(0)\right)=\operatorname{sign}\left(T_{E}\right)$.

$$
\therefore \quad n_{-}(\mathcal{L})=2 n-1+n_{-}\left(T_{E}\right) .
$$

Follows that

$$
\begin{aligned}
n_{-}\left(\left.\mathcal{L}\right|_{H^{1}(n)}\right) & =n_{-}(\mathcal{L})-n_{-}\left(\left.\mathcal{L}^{-1}\right|_{H^{1}(n)^{\perp}}\right) \\
& =2 n-1+n_{-}\left(T_{E}\right)-n_{-}\left(T_{E}\{T, M\}_{a, E}\right) .
\end{aligned}
$$

Follows that

$$
\begin{aligned}
n_{-}\left(\left.\mathcal{L}\right|_{H^{1}(n)}\right) & =n_{-}(\mathcal{L})-n_{-}\left(\left.\mathcal{L}^{-1}\right|_{H^{1}(n)^{\perp}}\right) \\
& =2 n-1+n_{-}\left(T_{E}\right)-n_{-}\left(T_{E}\{T, M\}_{a, E}\right)
\end{aligned}
$$

Fact: Recall, D comes from Jordan block...

$$
n_{-}(D)=n_{-}\left(\{T, M\}_{a, E}\{T, M, P\}_{a, E, c}\right)
$$

Follows that

$$
\begin{aligned}
n_{-}\left(\left.\mathcal{L}\right|_{H^{1}(n)}\right) & =n_{-}(\mathcal{L})-n_{-}\left(\left.\mathcal{L}^{-1}\right|_{H^{1}(n)^{\perp}}\right) \\
& =2 n-1+n_{-}\left(T_{E}\right)-n_{-}\left(T_{E}\{T, M\}_{a, E}\right)
\end{aligned}
$$

Fact: Recall, D comes from Jordan block...

$$
n_{-}(D)=n_{-}\left(\{T, M\}_{a, E}\{T, M, P\}_{a, E, c}\right)
$$

So, by "Jacobi-Sturm rule",

$$
\begin{aligned}
n_{-}\left(\left.\mathcal{L}\right|_{H^{1}(n)}\right)-n_{-}(D) & =2 n-p\left(\begin{array}{ccc}
T_{E} & T_{a} & T_{c} \\
M_{E} & M_{a} & M_{c} \\
P_{E} & P_{a} & P_{c}
\end{array}\right) \\
& =2 n-p(\partial\langle T, M, P\rangle(a, E, c)) \\
& =2 n-p\left(\partial^{2} K(a, E, c)\right)
\end{aligned}
$$

Conclusions:

- Have presented new set of techniques to analyze stability of periodic waves to more general classes of perturbations.
- Techniques can be used in variety of other problems:
(1) Ideally, want traveling wave ODE to be completely integrable (gBBM, NLS, etc.).
(2) Transverse instability analysis.
(3) Rigorous justifications of Whitham modulation theory (Formal physical theory for modulational instabilities).

Thank you!

