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Introduction

Consider the KdV equation

ut = uxxx + f (u)x

where f (u) is “nice”. Arise in applications with a variety of
nonlinearities.

f (u) = u2 ⇒ KdV equation. Canonical model for weakly
dispersive nonlinear unidirectional wave propagation.

f (u) = ±u3 ⇒ focusing/defocusing mKdV equation. Arises
naturally in plasma physics as a model for ion acoustic
perturbations.

f (u) = αur+1/2 for r ∈
(
−1

2
, 1

2

)
... has been derived in several

plasma physics models.

Also interesting for mathematical study: f (u) = u5 is L2 critical, and
KdV and mKdV are completely integrable PDE!
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Traveling Waves of form u(x , t) = ū(x + ct) are basic structures in
nonlinear waves!

Characteristics:
(1) Constant velocity c
(2) Same shape and profile!

uHx, 0LuHx, tL

ct

x0x0 - ct

∴ Traveling wave profile ū is STATIONARY solution of PDE

ut = uxxx + f (u)x − cux ,

i.e. solves ODE
u′′′ + f (u)′ − cu′ = 0.

After one integration, this is a HAMILTONIAN ODE!!!
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Wave profile u must satisfy ODE

u2
x

2
= E − F (u)− cu2

2
+ au︸ ︷︷ ︸

V (u;a,c)

, F ′ = f

where a,E ∈ R depend on boundary conditions imposed.
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Summary of ∃ theory

Solitary Waves:

If ū(x)→ const. when x → ±∞, have “Solitary wave”.

In this case, a and E fixed by b.c.’s at ±∞, so have two
parameter family of traveling waves:

ū(x + x0 − ct; c).

Periodic Waves:

If ū(x + T ) = ū(x) for some T > 0, have “periodic wave”.

In this case, a and E are “free”, so have four parameter family of
traveling waves:

ū(x + x0 − ct; a,E , c), period T = T (a,E , c).

• In special cases, ū can be expressed in terms of elliptic functions.
We make no use of this extra structure in our analysis...
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If ū(x)→ const. when x → ±∞, have “Solitary wave”.

In this case, a and E fixed by b.c.’s at ±∞, so have two
parameter family of traveling waves:
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Solitary Wave Stability Theory:

Linearization of gKdV flow about solitary wave with ū(x)→ 0 as
x → ±∞:

−vt = ∂x
(
−∂2

x − f ′(ū) + c
)︸ ︷︷ ︸

L[ū]

v , v ∈ L2(R).

Seek separated solution v(x , t) = e−λtv(x) leads to spectral problem

∂xL[ū]v = λv .

Spectral stability iff σ(∂xL[ū]) = σess(∂xL[ū]) ∪ σp(∂xL[ū]) ⊂ iR.
Essential Spectrum: Linear dispersion relation about background
ū ≡ 0 state is

ik
(
k2 − f ′(0) + c

)
= λ⇒ σess (∂xL[ū]) = iR.
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L[ū]

v , v ∈ L2(R).

Seek separated solution v(x , t) = e−λtv(x) leads to spectral problem
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Point Spectrum: Eigenvalues of ∂xL[ū], acting on L2(R), determined
by roots of “Evans Function” (transmission coefficient) D(λ).

D(λ) detects intersections of stable mfld. at +∞ and unstable
mfld at −∞.

Complex analytic in λ.

Roots agree in location and (algebraic) multiplicity of e.v.’s of
∂xL[ū].

Fact 1
1 sign(D(λ)) = 1 for λ� 1.
2 For some constant A > 0,

D(λ) = A

(
∂c

∫
R
u(x ; c)2dx |ū

)
λ2 +O(|λ|3).

Thus, have spectral instability if ∂c
∫
R u(x ; c)2dx < 0 at ū.
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FACT 2: [Pego& Weinstein 1992] 0 ≤ n− (∂xL[ū]) ≤ n− (L[ū]).

FACT 3: For solitary waves, n−(L[ū]) = 1.
Proof: ū′ satisfies L[ū]ū′ = 0 and has only one root on R. Sturm
Liouville Theory ⇒ 0 is second eigenvalue of L[ū].

∴ all unstable eigenvalues must be real!!

∴ Spectral stability iff ∂c
∫
R u(x ; c)2dx > 0 at ū.

Further, Fact 3 ⇒ condition necessary/sufficient for nonlinear
(orbital) stability!
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Proof: ū′ satisfies L[ū]ū′ = 0 and has only one root on R. Sturm
Liouville Theory ⇒ 0 is second eigenvalue of L[ū].
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Periodic Case?

Periodic Case is much more complicated:

(1) “More” of them: 4 parameter family, compared to 2 parameter
family of solitary waves.

(2) More general classes of perturbations available:
(a) Co-periodic = L2(R/TZ).
(b) Sub-harmonic = L2(R/nTZ), n ∈ N, n > 1.
(c) Localized = L2(R)... Most Physical!

(3) Structure of spec.: may be only eigenvalues, may be only
essential spec... depends on class of perturbations.

(4) n−(L[ū]) can be arbitrarially large (or “uncountable”) depending
on class of perturbations.
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Periodic Stability Theory

Let ū be T -periodic stationary solution of the nonlinear PDE

ut = uxxx + f (u)x − cux .

Consider a perturbation of ū: ψ(x , t) = ū(x) + εv(x , t), v ∈ X .

⇒ ∂x
(
−∂2

x − f ′(ū) + c
)︸ ︷︷ ︸

L[ū]

v = −vt

Decompose v(x , t) = e−λtv(x) so v solves the spectral problem

∂xL[u]v = λv

considered on X .

Spectral stability to X -perturbations ⇐⇒ specX (∂xL[u]) ⊂ Ri .
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Goal: analyze spectral problem

∂xL[ū]v = λv , v ∈ X . (?)

What is structure of specX (∂xL[u])?

(1) If X = L2(R/nTZ), then

specX (∂xL[u]) = specX ,p (∂xL[u])

⇒ (?) is an eigenvalue problem!!

(2) If X = L2(R), then

specX (∂xL[u]) = specX ,ess (∂xL[u])

⇒ (?) has no eigenvalues... all instabilities come from essential
sepc.!!!
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Localized Perturbations: X = L2(R)

To see this, wite spectral problem as first order system

Y ′(x , λ) = H(x , λ)Y (x , λ).

Period Map (Monodromy): M(λ) = Φ(T , λ), where Φ(x , λ) is
the matrix solution such that Φ(0, λ) = I. Thus, M(λ) is an
operator such that

M(λ)v(x , λ) = v(x + T , λ)

for any x ∈ R and vector solution v(x , λ). For simplicity, assume
that v(x , λ) satisfies

M(λ)v(x , λ) = µv(x , λ)

Then for all n ∈ Z have

v(NT , λ) = M(λ)Nv(0, λ) = µNv(0, λ)

⇒ if v(x , λ)→ 0 as x → +∞, then limx→−∞ |v(x , λ)| = +∞.
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Best you can hope for is for v to be uniformly bounded, i.e. |λ| = 1.

Gives characterization of (continuous) spectrum:

λ ∈ spec(∂xL[u]) ⇐⇒ σ(M(λ))
⋂

S1 6= ∅.

Following Gardner then, we define

D(λ, e iκ) = det
(
M(λ)− e iκI

)
.

Then λ ∈ spec(∂xL[u]) ⇐⇒ D(λ, e iκ) = 0 for some κ ∈ R.

Moreover,

specL2(R) (∂xL[u]) =
⋃

κ∈[−π,π)

{
λ ∈ C : D(λ, e iκ) = 0

}
.
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Remark:

If κ ∈ 2πQ, then bounded solution of

M(λ)v = e iκv

is nT periodic for some n ∈ N, i.e. λ ∈ σL2(R/nTZ)(∂xL[ū]).

⇒ specL2(R) (∂xL[u]) =
⋃
n∈N

specL2(R/nTN) (∂xL[u]).

∴ spec. stable in L2(R) iff spec. stable in L2(R/nTZ) ∀n ∈ N.
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Analyaisis of Evans ftn.

∃ theory gives a lot of information about spectrum at λ = 0.
Have 4-dim manifold

M = {u(x + x0 − ct; a,E , c)}
of stationary solutions of gKdV

ut − uxxx − f (u)x + cux = 0.

Diff. Geometry ⇒ equation

(∂t − ∂xL[ū]) v = 0

defines tan. space of M at fixed solution ū.
Tan. space at ū generated by variations:

Tū (M) = span{ux , ua, uE ,−tux + uc}
Follows that (formally)

∂xL[u]{ux , ua, uE} = 0, ∂xL[u]uc = −ux .
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Periodic Stability Theory

∴ have full set of (formal) solutions to ODE

∂xL[u]v = 0.

Moreover, ūx is T -periodic... follows that

D(0, 1) = det (M(0)− I) = 0.

Want to find curve κ→ λ(κ) defined in neighborhood of
(λ, κ) = (0, 0) such that

D(λ(κ), e iκ) = det
(
M(λ(κ))− e iκ

)
= 0.

Would be easy if we could use implicit function theorem, i.e. if

∂λD(λ, 1)
∣∣
λ=0
6= 0.
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Evaluate of ∂λD(λ, 1)
∣∣
λ=0

At λ = 0, {ux , ua, uE} provides three linearly independent
solutions of the formal differential equation

∂xL[u]v = 0.

Thus, can explicitly construct monodromy matrix at λ = 0.

By analyticity of M(λ), have

M(λ) = M(0) + λMλ(0) +O(|λ|2)

We use perturbation theory to find Mλ(λ)....

Variation of parameters formula yields first order variation in ua
and uE columns. Moreover, uc solves

∂xL[u]uc = −ux
Follows that −uc gives first order λ-variation in translation (ux)
direction!!!! Thus, we have constructed Mλ(0).
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Asymptotic Expansion of D(λ, 1)

Taking determinants then, we have

d

dλ
D(λ, 1) = det

(
M(0) + λMλ(0)− I +O(|λ|2)

) ∣∣
λ=0

= 0

⇒ Implicit Function Theorem fails!!!!!

We need to determine next order term Mλλ(0). Can be done by
using variation of parameters again!
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Asymptotic Expansion for D(λ, 1)

Ugly algebra yields

D(λ, 1) = −1

2

∂(T ,M ,P)

∂(a,E , c)︸ ︷︷ ︸
{T ,M,P}a,E ,c

λ3 +O(|λ|4).

where T =period and M and P refer to the mass and
momentum:

M =

∫ T

0

u(x)dx P =

∫ T

0

u(x)2dx .

M and P are conserved quantities of the gKdV flow!

Thus, D(λ, 1) = O(|λ|3) and hence more care is needed to use
the implicit function theorem.

In particular, follows there are in general three branches of
spectrum which bifurcate from the λ = 0 state for |κ| � 1.
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Asymptotic Expansion for D(λ, 1)
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Continuing above computations, local analysis around
(λ, κ) = (0, 0) yields

D(λ, e iκ) = iκ3 +
iκλ2

2
({T ,P}E ,c + 2{M ,P}a,E )

− λ3

2
{T ,M ,P}a,E ,c +O(|λ|4 + κ4)

where the notation {f , g}x ,y is used for two-by-two Jacobians.

Defining z = iκ
λ

, we see z must be a root of

P(z) = −z3 +
z

2
({T ,P}E ,c + 2{M ,P}a,E )− 1

2
{T ,M ,P}a,E ,c .

and hence have modulational stability when P has three real
roots!
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M.J. & Bronski (ARMA – 2010)

Define

∆MI :=
1

2
({T ,P}E ,c + 2{M ,P}a,E )3 − 27

4
{T ,M ,P}2

a,E ,c .

∆MI > 0 ∆MI < 0

Yields “normal form” for spectrum near origin for gKdV equations!
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Index ∆MI detects instabilities to “long-wavelength” perturbations,
i.e. to T̃ -periodic perturbations with

0 < |T − T̃ | � 1.

Such instabilities sometimes called “modulational” or “side-band”.

Can also use above computations to detect “co-periodic” (κ = 0)
instabilities, i.e. stabilities in L2(R/TZ).

Recall, from above, that D(λ, 1) = −1
2
{T ,M ,P}a,E ,cλ3 +O(|λ|4).

Also, can prove that

lim
λ→∞

sign (D(λ, 1)) < 0
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M.J. & Bronski (ARMA – 2010)

Yields orientation index

lim
λ→0+

sign (D(λ, 1)) lim
λ→∞

sign (D(λ, 1)) = sign ({T ,M ,P}a,E ,c) .

If {T ,M ,P}a,E ,c < 0, then D(λ, 1) = 0 for some λ > 0.
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Q: How does this compare with Solitary Wave theory when
f (u) = up+1, c > 0.

Using standard asymptotic methods, can show that in ”homoclinic
limit”

{T ,M ,P}a,E ,c ∼ −TEMaPc

and where TE > 0 (clearly) and Ma < 0 (computation).

Thus, in homoclinic limit,

sign({T ,M ,P}a,E ,c) = sign(Pc) = sign

(
∂c

∫ T

0

u2dx

)
.

Moreover, by scaling, have

sign(Pc) = sign

(
2

pc
− 1

2c

)
= sign(4− p).

Agrees with results from Solitary wave theory!!!
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Computation?

OK, so you have an expression which “determines” when a
particular wave is modulationally stable..... can you compute it?!
YES!!!
(1) For power-law nonlinearities (f (u) = up+1) with p ∈ N, can determine

explicit formula for MI index in terms of moments of the underlying
wave.

(2) For non-power-law, must rely on numerics..... but at least you now
have a determined quantity to do numerics on!
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Modulational Theory for KdV

In case of KdV

ut = uxxx +

(
u2

2

)
x

,

can express conserved quantities and period as integrals of closed
cycles over a Riemann surface, and hence we can compute MI
index using elliptic function calculations (Picard-Fuchs system).

Get

∆MI = C0 ·
N2

disc(E − V (·; a,E , c))

where C0 > 0.

Notice disc(E − V (·; a,E , c)) > 0 iff the corresponding solution
is periodic, so all periodic waves of KdV are modulatioanlly
stable!!!!
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Modulational Theory for mKdV f (u) = u3 w/ c > 0
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L2-Critical KdV f (u) = u5(with positive wavespeed)
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Nonlinear (Orbital) Stability

Q: Does spectral stability ⇒ Orbital Stability?
True for solitary waves!
Depends on class of perturbations for periodic case!!

In periodic case, if consider perturbations in...
L2(R/TZ), then

0 ≤ n−(∂xL[ū]) ≤ n−(L[u]) = 1 or 2,

so, sometimes, spec. stable ⇒ orbital stable (same argument
from solitary wave case).
L2(R/nTZ), then

n ≤ n−(L[ū]) ≤ n + 1

so solitary wave argument goes out window!
For KdV/mKdV, can work around this for any n ∈ N!
KdV/mKdV proof follows “multi-soliton” stability approach.
Nothing known outside integrable context...

L2(R).... NO CLUE!!!
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Result of Deconinck & Kapitula: ∀n ∈ N,

k+
u (n) + k−i (n) = n−

(
L[ū]|H1(n)

)
− n(D)

where

(a) k+
u (n) =# Unstable e.v.’s of ∂xL[ū] on L2(R/nTZ) w/
<(λ) > 0.

(b) k−i (n) =# Purely imaginary e.v.’s of ∂xL[ū] on L2(R/nTZ) with
negative Krein signature:

v ∈ N(∂xL[u]− λ), κ(v) := 〈v ,L[u]v〉L2([0,nT ]) .

and

(a) H1(n) = Mean-zero subspace of L2(R/nTZ).

(b) D is a finite-dimensional matrix containing information about
Ng (∂xL[ū]) on L2(R/TZ).

Main Point: If k+
u (n) > 0 for some n, have instability... what if = 0?

(1) If “LHS”= 0, then have orbital stability in L2(R/nTZ).

(2) If “LHS”= 0 is odd, have spectral instability in L2(R/nTZ).
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negative Krein signature:

v ∈ N(∂xL[u]− λ), κ(v) := 〈v ,L[u]v〉L2([0,nT ]) .

and

(a) H1(n) = Mean-zero subspace of L2(R/nTZ).

(b) D is a finite-dimensional matrix containing information about
Ng (∂xL[ū]) on L2(R/TZ).

Main Point: If k+
u (n) > 0 for some n, have instability... what if = 0?

(1) If “LHS”= 0, then have orbital stability in L2(R/nTZ).

(2) If “LHS”= 0 is odd, have spectral instability in L2(R/nTZ).
Mathew Johnson (University of Kansas) Stability of Periodic GKdV Waves 9/21/2011 32 / 40



Q: How can you compute n(L[u]|H1(n))− n(D)?

• When considering special solutions, use elliptic function
calculations.

Usually provides very explicit conclusions.

Can be technically tedious, but usually straight forward.

BUT, sometimes can miss bigger picture...

• In general, can reformulate count in terms of the “Jacobians” seen
before!
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Theorem:[Bronski, M.J., Kapitula (to appear)] We have

k+
u (n) + k−i (n) = 2n − p

(
∂2K (ū)

)
where K = K (a,E , c) is the classical action (in sense of action-angle
variables) of the traveling wave ODE

u2
x

2
= E − V (u; a,E , c),

and p(A) denotes the number of positive eigenvalues of a given
matrix A.

Here K (a,E , c) =
∮

Γ
p dq =

∮
Γ

√
E − V (u; a,E , c)du is a generating

function for the conserved quantities of the gKDV flow:

Ka = M , KE = T , Kc = P .

So, ∂2K (ū) is expressed in terms of derivatives of T ,M ,P with
respect to (a,E , c).

In particular, for f (u) = up can express p(∂2K (ū)) in terms of
moments of the wave ū itself!
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Idea of Proof...

The major steps:

(1) n(L[ū]|H1(n)) = n(L[ū])+“fudge factor”.

(2) n(L[ū]) = 2n − 1 + n−(TE )... so unstable e.v.’s may be
complex!!!

(3) Determine n−(D)... relates to Jordan co-periodic Jordan block at
λ = 0.

Proofs are new to literature, but based on VERY classical ideas.
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Step 1: Relate n−(L[ū]|H1(n)) and n−(L[ū])

Lemma: Spse. T is invertible, bounded below with compact
resolvant. Let S be a subspace with dim(S) = d . Then

n−(T |S) + n−(T−1|S⊥) = n−(T ).

(H1(n))⊥ = span(1), so

n−(L−1(H1(n))⊥) = n−
(〈

1,L−1(1)
〉)

Traveling waves satisfy

uxx + f (u)− cu = a ⇒ Lua = 1, LuE = 0.

Thus (since TEua − TauE is T -periodic),〈
1,L−1(1)

〉
=

∫ T

0

(
ua −

Ta

TE
uE

)
dx =

{T ,M}a,E
TE

.

Mathew Johnson (University of Kansas) Stability of Periodic GKdV Waves 9/21/2011 36 / 40



Step 1: Relate n−(L[ū]|H1(n)) and n−(L[ū])
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Step 2: Compute n−(L)

Notice L = −∂2
x − f ′(u) + c is a linear Schrodinger operator w/

periodic coefficients.
Facts: Considered as an operator on L2(R/nTZ),

Spec. of L determined by Floquet discriminate k(λ):

λ ∈ spec(L) iff k(λ) = 2.

Translation invariance of gKdV ⇒ Lu′ = 0 ⇒ k(0) = 2.

u′ has 2n roots on [0, nT ) ⇒ Sturm Liouville Theory says zero is
either nth or (n + 1)st eigenvalue of L.

To see which, look at k ′(0)...
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Step 2: Compute n−(L) (Cont.)

kHΜL k ' H0L > 0

Μ1

Μ2 Μ3

Μ4 Μ5
-5 -4 -3 -2 -1 1 2

-2

-1

1

2

3

kHΜL k ' H0L = 0

Μ1

Μ2 Μ3

Μ4 = Μ5
-5 -4 -3 -2 -1 1 2

-2

-1

1

2

3

kHΜL k ' H0L < 0

Μ1

Μ3

Μ4 Μ5

Μ2
-5 -4 -3 -2 -1 1 2

-2

-1

1

2

3

Fact: sign(k ′(0)) = sign(TE ).

∴ n−(L) = 2n − 1 + n−(TE ).
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Follows that

n−(L|H1(n)) = n−(L)− n−(L−1|H1(n)⊥)

= 2n − 1 + n−(TE )− n−(TE{T ,M}a,E ).

Fact: Recall, D comes from Jordan block...

n−(D) = n− ({T ,M}a,E{T ,M ,P}a,E ,c) .

So, by ”Jacobi-Sturm rule”,

n−(L|H1(n))− n−(D) = 2n − p

 TE Ta Tc

ME Ma Mc

PE Pa Pc


= 2n − p(∂ 〈T ,M ,P〉 (a,E , c))

= 2n − p(∂2K (a,E , c)).
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Conclusions:

Have presented new set of techniques to analyze stability of
periodic waves to more general classes of perturbations.
Techniques can be used in variety of other problems:

1 Ideally, want traveling wave ODE to be completely integrable (gBBM,
NLS, etc.).

2 Transverse instability analysis.
3 Rigorous justifications of Whitham modulation theory (Formal physical

theory for modulational instabilities).

Thank you!
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